Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes (Basel) ; 15(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540351

RESUMEN

Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades por Almacenamiento Lisosomal , Humanos , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/genética , Mutación , Lisosomas/metabolismo
2.
Biochimie ; 222: 123-131, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38458414

RESUMEN

PMM2-CDG, a disease caused by mutations in phosphomannomutase-2, is the most common congenital disorder of glycosylation. Yet, it still lacks a cure. Targeting phosphomannomutase-2 with pharmacological chaperones or inhibiting the phosphatase activity of phosphomannomutase-1 to enhance intracellular glucose-1,6-bisphosphate have been proposed as therapeutical approaches. We used Recombinant Bacterial Thermal Shift Assay to assess the binding of a substrate analog to phosphomannomutase-2 and the specific binding to phosphomannomutase-1 of an FDA-approved drug - clodronate. We also deepened the clodronate binding by enzyme activity assays and in silico docking. Our results confirmed the selective binding of clodronate to phosphomannomutase-1 and shed light on such binding.

3.
Biochim Biophys Acta Gen Subj ; 1868(2): 130526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049040

RESUMEN

INTRODUCTION: The study of protein stability is crucial to biochemistry and relies on different methodologies. Recently, the Cellular Thermal Shift Assay has been introduced to study protein stability in whole cells. METHODS: We report a novel application of CeTSA named ReBaTSA. This Recombinant Bacterial TSA was performed using clear extracts from bacteria expressing a recombinant protein, incubated at different temperatures, centrifuged and analyzed via SDS-PAGE. RESULTS AND CONCLUSIONS: We demonstrated the feasibility and reliability of this simplified approach. We validated the method using the protein phosphomannomutase-2 and its common mutants, which were compared in the presence or the absence of a known ligand.


Asunto(s)
Lisados Bacterianos , Proteínas Mutantes , Reproducibilidad de los Resultados , Estabilidad Proteica , Proteínas Recombinantes/genética
4.
Orphanet J Rare Dis ; 18(1): 247, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644541

RESUMEN

Congenital disorders of glycosylation are a group of more than 160 rare genetic defects in protein and lipid glycosylation. Since the first clinical report in 1980 of PMM2-CDG, the most common CDG worldwide, research made great strides, but nearly all of them are still missing a cure. CDG diagnosis has been at a rapid pace since the introduction of whole-exome/whole-genome sequencing as a diagnostic tool. Here, we retrace the history of CDG by analyzing all the patents associated with the topic. To this end, we explored the Espacenet database, extracted a list of patents, and then divided them into three major groups: (1) Drugs/therapeutic approaches for CDG, (2) Drug delivery tools for CDG, (3) Diagnostic tools for CDG. Despite the enormous scientific progress experienced in the last 30 years, diagnostic tools, drugs, and biomarkers are still urgently needed.


Asunto(s)
Trastornos Congénitos de Glicosilación , Narración , Humanos , Glicosilación , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Bases de Datos Factuales , Exoma
5.
Essays Biochem ; 67(4): 653-670, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503682

RESUMEN

Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.


Asunto(s)
Metaloproteínas , Oxidorreductasas , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Metales/química , Metales/metabolismo , Oxidación-Reducción , Metaloproteínas/química , Metaloproteínas/metabolismo , Dominio Catalítico
6.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901983

RESUMEN

Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.


Asunto(s)
Enfermedad de Fabry , Humanos , Enfermedad de Fabry/metabolismo , alfa-Galactosidasa/metabolismo , Terapia de Reemplazo Enzimático/métodos , Isoenzimas/uso terapéutico , Proteínas Recombinantes/uso terapéutico
7.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674610

RESUMEN

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Asunto(s)
Curcumina , Enfermedad de Fabry , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , alfa-Galactosidasa/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Galactosa/metabolismo , Mutación , Lisosomas/metabolismo , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico
8.
Elife ; 112022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214454

RESUMEN

The most common cause of human congenital disorders of glycosylation (CDG) are mutations in the phosphomannomutase gene PMM2, which affect protein N-linked glycosylation. The yeast gene SEC53 encodes a homolog of human PMM2. We evolved 384 populations of yeast harboring one of two human-disease-associated alleles, sec53-V238M and sec53-F126L, or wild-type SEC53. We find that after 1000 generations, most populations compensate for the slow-growth phenotype associated with the sec53 human-disease-associated alleles. Through whole-genome sequencing we identify compensatory mutations, including known SEC53 genetic interactors. We observe an enrichment of compensatory mutations in other genes whose human homologs are associated with Type 1 CDG, including PGM1, which encodes the minor isoform of phosphoglucomutase in yeast. By genetic reconstruction, we show that evolved pgm1 mutations are dominant and allele-specific genetic interactors that restore both protein glycosylation and growth of yeast harboring the sec53-V238M allele. Finally, we characterize the enzymatic activity of purified Pgm1 mutant proteins. We find that reduction, but not elimination, of Pgm1 activity best compensates for the deleterious phenotypes associated with the sec53-V238M allele. Broadly, our results demonstrate the power of experimental evolution as a tool for identifying genes and pathways that compensate for human-disease-associated alleles.


Asunto(s)
Trastornos Congénitos de Glicosilación , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Fosfoglucomutasa/genética , Proteínas Mutantes , Proteínas de Saccharomyces cerevisiae/genética
9.
Orphanet J Rare Dis ; 17(1): 303, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907899

RESUMEN

BACKGROUND: Congenital disorders of glycosylation (CDG) are a large family of rare genetic diseases for which therapies are virtually nonexistent. However, CDG therapeutic research has been expanding, thanks to the continuous efforts of the CDG medical/scientific and patient communities. Hence, CDG drug development is a popular research topic. The main aim of this study was to understand current and steer future CDG drug development and approval by collecting and analysing the views and experiences of the CDG community, encompassing professionals and families. An electronic (e-)survey was developed and distributed to achieve this goal. RESULTS: A total of 128 respondents (46 CDG professionals and 82 family members), mainly from Europe and the USA, participated in this study. Most professionals (95.0%) were relatively familiar with drug development and approval processes, while CDG families revealed low familiarity levels, with 8.5% admitting to never having heard about drug development. However, both stakeholder groups agreed that patients and families make significant contributions to drug development and approval. Regarding their perceptions of and experiences with specific drug development and approval tools, namely biobanks, disease models, patient registries, natural history studies (NHS) and clinical trials (CT), the CDG community stakeholders described low use and participation, as well as variable familiarity. Additionally, CDG professionals and families shared conflicting views about CT patient engagement and related information sharing. Families reported lower levels of involvement in CT design (25.0% declared ever being involved) and information (60.0% stated having been informed) compared to professionals (60.0% and 85.7%, respectively). These contrasting perceptions were further extended to their insights and experiences with patient-centric research. Finally, the CDG community (67.4% of professionals and 54.0% of families) reported a positive vision of artificial intelligence (AI) as a drug development tool. Nevertheless, despite the high AI awareness among CDG families (76.8%), professionals described limited AI use in their research (23.9%). CONCLUSIONS: This community-centric study sheds new light on CDG drug development and approval. It identifies educational, communication and research gaps and opportunities for CDG professionals and families that could improve and accelerate CDG therapy development.


Asunto(s)
Trastornos Congénitos de Glicosilación , Inteligencia Artificial , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Familia , Glicosilación , Humanos , Participación del Paciente
10.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643636

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Seudohipoparatiroidismo , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Impresión Genómica , Humanos , Proteínas/genética , Seudohipoparatiroidismo/genética , Seudohipoparatiroidismo
11.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563496

RESUMEN

Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.


Asunto(s)
Enfermedad de Fabry , alfa-Galactosidasa , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Aspirina/farmacología , Aspirina/uso terapéutico , Reposicionamiento de Medicamentos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Humanos , Lisosomas , Chaperonas Moleculares/genética , Mutación , alfa-Galactosidasa/genética , alfa-Galactosidasa/uso terapéutico
12.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408914

RESUMEN

Ambroxol (ABX) is a mucolytic agent used for the treatment of respiratory diseases. Bioactivity has been demonstrated as an enhancement effect on lysosomal acid ß-glucosidase (ß-Glu) activity in Gaucher disease (GD). The positive effects observed have been attributed to a mechanism of action similar to pharmacological chaperones (PCs), but an exact mechanistic description is still pending. The current study uses cell culture and in vitro assays to study the effects of ABX on ß-Glu activity, processing, and stability upon ligand binding. Structural analogues bromohexine, 4-hydroxybromohexine, and norbromohexine were screened for chaperone efficacy, and in silico docking was performed. The sugar mimetic isofagomine (IFG) strongly inhibits ß-Glu, while ABX exerts its inhibitory effect in the micromolar range. In GD patient fibroblasts, IFG and ABX increase mutant ß-Glu activity to identical levels. However, the characteristics of the banding patterns of Endoglycosidase-H (Endo-H)-digested enzyme and a substantially lower half-life of ABX-treated ß-Glu suggest different intracellular processing. In line with this observation, IFG efficiently stabilizes recombinant ß-Glu against thermal denaturation in vitro, whereas ABX exerts no significant effect. Additional ß-Glu enzyme activity testing using Bromohexine (BHX) and two related structures unexpectedly revealed that ABX alone can refunctionalize ß-Glu in cellula. Taken together, our data indicate that ABX has little in vitro ability to act as PC, so the mode of action requires further clarification.


Asunto(s)
Ambroxol , Enfermedad de Gaucher , Ambroxol/farmacología , Ambroxol/uso terapéutico , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , beta-Glucosidasa/química
13.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215373

RESUMEN

Therapeutic solutions to counter Burkholderia cepacia complex (Bcc) bacteria are challenging due to their intrinsically high level of antibiotic resistance. Bcc organisms display a variety of potential virulence factors, have a distinct lipopolysaccharide naturally implicated in antimicrobial resistance. and are able to form biofilms, which may further protect them from both host defence peptides (HDPs) and antibiotics. Here, we report the promising anti-biofilm and immunomodulatory activities of human HDP GVF27 on two of the most clinically relevant Bcc members, Burkholderia multivorans and Burkholderia cenocepacia. The effects of synthetic and labelled GVF27 were tested on B. cenocepacia and B. multivorans biofilms, at three different stages of formation, by confocal laser scanning microscopy (CLSM). Assays on bacterial cultures and on human monocytes challenged with B. cenocepacia LPS were also performed. GVF27 exerts, at different stages of formation, anti-biofilm effects towards both Bcc strains, a significant propensity to function in combination with ciprofloxacin, a relevant affinity for LPSs isolated from B. cenocepacia as well as a good propensity to mitigate the release of pro-inflammatory cytokines in human cells pre-treated with the same endotoxin. Overall, all these findings contribute to the elucidation of the main features that a good therapeutic agent directed against these extremely leathery biofilm-forming bacteria should possess.

14.
Pediatr Emerg Care ; 38(1): e371-e377, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214518

RESUMEN

OBJECTIVE: Mortality in pediatric septic shock remains unacceptably high. Delays in vasopressor administration have been associated with an increased risk of mortality. Current treatment guidelines suggest the use of a peripheral vascular line (PVL) for inotropic administration in fluid-refractory septic shock when a central vascular line is not already in place. The aim of this study was to report local adverse effects associated with inotropic drug administration through a PVL at a pediatric emergency department setting in the first hour of treatment of septic shock. METHODS: A prospective, descriptive, observational cohort study of patients with septic shock requiring PVL inotropic administration was conducted at the pediatric emergency department of a tertiary care pediatric hospital. For the infusion and postplacement care of the PVL for vasoactive drugs, an institutional nursing protocol was used. RESULTS: We included 49 patients; 51% had an underlying disease. Eighty-four percent of the children included had a clinical "cold shock." The most frequently used vasoactive drug was epinephrine (72%). One patient presented with local complications. CONCLUSIONS: At our center, infusion of vasoactive drugs through a PVL was shown to be safe and allowed for adherence to the current guidelines for pediatric septic shock.


Asunto(s)
Choque Séptico , Niño , Servicio de Urgencia en Hospital , Fluidoterapia , Humanos , Estudios Prospectivos , Choque Séptico/tratamiento farmacológico , Vasoconstrictores/uso terapéutico
15.
Genes (Basel) ; 12(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921689

RESUMEN

The protease encoded by the TMPRSS2 gene facilitates viral infections and has been implicated in the pathogenesis of SARS-CoV-2. We analyzed the TMPRSS2 sequence and correlated the protein variants with the clinical features of a cohort of 1177 patients affected by COVID-19 in Italy. Nine relatively common variants (allele frequency > 0.01) and six missense variants which may affect the protease activity according to PolyPhen-2 in HumVar-trained mode were identified. Among them, p.V197M (p.Val197Met) (rs12329760) emerges as a common variant that has a deleterious effect on the protease and a protective effect on the patients. Its role appears particularly relevant in two subgroups of patients-young males and elderly women-and among those affected by co-morbidities, where the variant frequency is higher among individuals who were mildly affected by the disease and did not need hospitalization or oxygen therapy than among those more severely affected, who required oxygen therapy, ventilation or intubation. This study provides useful information for the identification of patients at risk of developing a severe form of COVID-19, and encourages the usage of drugs affecting the expression of TMPRSS2 or inhibiting protein activity.


Asunto(s)
COVID-19/etiología , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/genética , Anciano , COVID-19/epidemiología , COVID-19/genética , COVID-19/terapia , Comorbilidad , Femenino , Frecuencia de los Genes , Hospitalización , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Mutación , Respiración Artificial , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Resultado del Tratamiento
16.
Eur J Med Genet ; 64(6): 104227, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33872774

RESUMEN

The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Predisposición Genética a la Enfermedad , Inmunidad Innata , SARS-CoV-2/patogenicidad , Minería de Datos , Frecuencia de los Genes , Variación Genética , Interacciones Microbiota-Huesped , Humanos , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
17.
Clin Epigenetics ; 12(1): 139, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928291

RESUMEN

BACKGROUND: PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Maternal-effect variants of the subcortical maternal complex proteins are associated with heterogeneous diseases, including female infertility, hydatidiform mole, and imprinting disorders with multi-locus imprinting disturbance. While the involvement of PADI6 in infertility is well demonstrated, its role in imprinting disorders is less well established. RESULTS: We have identified by whole-exome sequencing analysis four cases of Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance whose mothers are carriers of PADI6 variants. In silico analysis indicates that these variants result in loss of function, and segregation analysis suggests they act as either recessive or dominant-negative maternal-effect mutations. Genome-wide methylation analysis revealed heterogeneous and extensively altered methylation profiles of imprinted loci in the patients, including two affected sisters, but not in their healthy siblings. CONCLUSION: Our results firmly establish the role of PADI6 in imprinting disorders. We report loss-of-function maternal-effect variants of PADI6 that are associated with heterogeneous multi-locus imprinting disturbances in the progeny. The rare finding of two siblings affected by Beckwith-Wiedemann syndrome suggests that in some cases, familial recurrence risk of these variants may be high. However, the heterogeneous phenotypes of the other pedigrees suggest that altered oocyte PADI6 function results in stochastic maintenance of methylation imprinting with unpredictable consequences on early embryo health.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN/genética , Herencia Materna/genética , Arginina Deiminasa Proteína-Tipo 6/genética , Adolescente , Adulto , Síndrome de Beckwith-Wiedemann/diagnóstico , Preescolar , Femenino , Impresión Genómica/genética , Heterocigoto , Humanos , Mola Hidatiforme/epidemiología , Mola Hidatiforme/genética , Lactante , Infertilidad Femenina/epidemiología , Infertilidad Femenina/genética , Masculino , Mutación , Oocitos/metabolismo , Linaje , Fenotipo , Embarazo , Hermanos , Secuenciación del Exoma/métodos
18.
BMC Bioinformatics ; 21(Suppl 10): 348, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32838733

RESUMEN

BACKGROUND: Bioinformatics has pervaded all fields of biology and has become an indispensable tool for almost all research projects. Although teaching bioinformatics has been incorporated in all traditional life science curricula, practical hands-on experiences in tight combination with wet-lab experiments are needed to motivate students. RESULTS: We present a tutorial that starts from a practical problem: finding novel enzymes from marine environments. First, we introduce the idea of metagenomics, a recent approach that extends biotechnology to non-culturable microbes. We presuppose that a probe for the screening of metagenomic cosmid library is needed. The students start from the chemical structure of the substrate that should be acted on by the novel enzyme and end with the sequence of the probe. To attain their goal, they discover databases such as BRENDA and programs such as BLAST and Clustal Omega. Students' answers to a satisfaction questionnaire show that a multistep tutorial integrated into a research wet-lab project is preferable to conventional lectures illustrating bioinformatics tools. CONCLUSION: Experimental biologists can better operate basic bioinformatics if a problem-solving approach is chosen.


Asunto(s)
Biotecnología/educación , Biología Computacional/educación , Biología Marina/educación , Metagenómica , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Bases de Datos Factuales , Bases de Datos de Proteínas , Objetivos , Humanos , Aprendizaje , Interfaz Usuario-Computador
19.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31940970

RESUMEN

The term "pharmacological chaperone" was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.


Asunto(s)
Enfermedad de Fabry , Chaperonas Moleculares/uso terapéutico , Mutación Missense , alfa-Galactosidasa , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/genética , Humanos , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
20.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454904

RESUMEN

A large number of mutations causing PMM2-CDG, which is the most frequent disorder of glycosylation, destabilize phosphomannomutase2. We looked for a pharmacological chaperone to cure PMM2-CDG, starting from the structure of a natural ligand of phosphomannomutase2, α-glucose-1,6-bisphosphate. The compound, ß-glucose-1,6-bisphosphate, was synthesized and characterized via 31P-NMR. ß-glucose-1,6-bisphosphate binds its target enzyme in silico. The binding induces a large conformational change that was predicted by the program PELE and validated in vitro by limited proteolysis. The ability of the compound to stabilize wild type phosphomannomutase2, as well as frequently encountered pathogenic mutants, was measured using thermal shift assay. ß-glucose-1,6-bisphosphate is relatively resistant to the enzyme that specifically hydrolyses natural esose-bisphosphates.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Mutación , Fosfotransferasas (Fosfomutasas)/deficiencia , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Fosfotransferasas (Fosfomutasas)/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...