Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(37): 14873-14887, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37651747

RESUMEN

Titanium compounds in low oxidation states are highly reducing species and hence powerful tools for the functionalization of small molecules. However, their potential has not yet been fully realized because harnessing these highly reactive complexes for productive reactivity is generally challenging. Advancing this field, herein we provide a detailed route for the formation of titanium(III) orthophenylendiamido (PDA) species using [LiBHEt3] as a reducing agent. Initially, the corresponding lithium PDA compounds [Li2(ArPDA)(thf)3] (Ar = 2,4,6-trimethylphenyl (MesPDA), 2,6-diisopropylphenyl (iPrPDA)) are combined with [TiCl4(thf)2] to form the heterobimetallic complexes [{TiCl(ArPDA)}(µ-ArPDA){Li(thf)n}] (n = 1, Ar = iPr 3 and n = 2, Ar = Mes 4). Compound 4 evolves to species [Ti(MesPDA)2] (6) via thermal treatment. In contrast, the transformation of 3 into [Ti(iPrPDA)2] (5) only occurs in the presence of [LiNMe2], through a lithium-assisted process, as revealed by density functional theory (DFT). Finally, the Ti(IV) compounds 3-6 react with [LiBHEt3] to give rise to the Ti(III) species [Li(thf)4][Ti(ArPDA)2] (Ar = iPr 8, Mes 9). These low-valent compounds in combination with [PPN]Cl (PPN = bis(triphenylphosphine)iminium) are proved to be highly selective catalysts for the copolymerization of CO2 and cyclohexene epoxide. Reactions occur at 1 bar pressure with activity/selectivity levels similar to Salen-Cr(III) compounds.

2.
Inorg Chem ; 61(35): 14075-14085, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35997604

RESUMEN

Cobalt-catalyzed C-H amination via M-nitrenoid species is spiking the interest of the research community. Understanding this process at a molecular level is a challenging task, and here we report a well-defined macrocyclic system featuring a pseudo-Oh aryl-CoIII species that reacts with aliphatic azides to effect intramolecular Csp2-N bond formation. Strikingly, a putative aryl-Co═NR nitrenoid intermediate species is formed and is rapidly trapped by a carboxylate ligand to form a carboxylate masked-nitrene, which functions as a shortcut to stabilize and guide the reaction to productive intramolecular Csp2-N bond formation. On one hand, several intermediate species featuring the Csp2-N bond formed have been isolated and structurally characterized, and the essential role of the carboxylate ligand has been proven. Complementarily, a thorough density functional theory study of the Csp2-N bond formation mechanism explains at the molecular level the key role of the carboxylate-masked nitrene species, which is essential to tame the metastability of the putative aryl-CoIII═NR nitrene species to effectively yield the Csp2-N products. The solid molecular mechanistic scheme determined for the Csp2-N bond forming reaction is fully supported by both experimental and computation complementary studies.


Asunto(s)
Ácidos Carboxílicos , Aminación , Ácidos Carboxílicos/química , Catálisis , Iminas , Ligandos , Estructura Molecular
3.
J Chem Theory Comput ; 17(2): 1098-1105, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33439029

RESUMEN

Real-space analysis tools afford additive and transferable contributions of atoms to molecular properties. In the case of the molecular (hyper)polarizabilities, the atomic contributions that have been derived so far include a charge-transfer term that is origin-dependent. In this letter, we present the first genuinely origin-independent energy-based (OIEB) methodology for the decomposition of the static (hyper)polarizabilities that benefits from real-space molecular energy decomposition schemes, focusing on the static polarizability and showing that extension to static hyperpolarizabilities is straightforward. The numerical realization of the OIEB method shows the expected origin independence, atomic additivity, and transferability of atomic and functional group polarizability tensors. Furthermore, the OIEB atomic (fragment) polarizability tensors are symmetric by definition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...