Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 131(1-2): 171-180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792227

RESUMEN

Primary Hyperoxaluria type I (PH1) is a rare disease caused by mutations in the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT), a liver enzyme involved in the detoxification of glyoxylate, the failure of which results in accumulation of oxalate and kidney stones formation. The role of protein misfolding in the AGT deficit caused by most PH1-causing mutations is increasingly being recognized. In addition, the genetic background in which a mutation occurs is emerging as a critical risk factor for disease onset and/or severity. Based on these premises, in this study we have analyzed the clinical, biochemical and cellular effects of the p.Ile56Asn mutation, recently described in a PH1 patient, as a function of the residue at position 11, a hot-spot for both polymorphic (p.Pro11Leu) and pathogenic (p.Pro11Arg) mutations. We have found that the p.Ile56Asn mutation induces a structural defect mostly related to the apo-form of AGT. The effects are more pronounced when the substitution of Ile56 is combined with the p.Pro11Leu and, at higher degree, the p.Pro11Arg mutation. As compared with the non-pathogenic forms, AGT variants display reduced expression and activity in mammalian cells. Vitamin B6, a currently approved treatment for PH1, can overcome the effects of the p.Ile56Asn mutation only when it is associated with Pro at position 11. Our results provide a first proof that the genetic background influences the effects of PH1-causing mutations and the responsiveness to treatment and suggest that molecular and cellular studies can integrate clinical data to identify the best therapeutic strategy for PH1 patients.


Asunto(s)
Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/genética , Hígado/efectos de los fármacos , Transaminasas/genética , Línea Celular , Cristalografía por Rayos X , Glioxilatos/metabolismo , Humanos , Hiperoxaluria Primaria/patología , Hígado/metabolismo , Hígado/patología , Mutación/genética , Conformación Proteica , Pliegue de Proteína/efectos de los fármacos , Relación Estructura-Actividad , Transaminasas/ultraestructura , Vitamina B 6/química , Vitamina B 6/farmacología
2.
J Inherit Metab Dis ; 41(2): 263-275, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29110180

RESUMEN

Primary hyperoxaluria type I (PH1) is a rare disease caused by the deficit of liver alanine-glyoxylate aminotransferase (AGT). AGT prevents oxalate formation by converting peroxisomal glyoxylate to glycine. When the enzyme is deficient, progressive calcium oxalate stones deposit first in the urinary tract and then at the systemic level. Pyridoxal 5'-phosphate (PLP), the AGT coenzyme, exerts a chaperone role by promoting dimerization, as demonstrated by studies at protein and cellular level. Thus, variants showing a destabilized dimeric structure should, in principle, be responsive to vitamin B6, a precursor of PLP. However, models to predict the extent of responsiveness of each variant are missing. We examined the effects of pathogenic interfacial mutations by combining bioinformatic predictions with molecular and cellular studies on selected variants (R36H, G42E, I56N, G63R, and G216R), in both their holo- (i.e., with bound PLP) and apo- (i.e., without bound PLP) form. We found that all variants displayed structural alterations mainly related to the apoform and consisting of an altered tertiary and quaternary structure. G216R also shows a strongly reduced catalytic efficiency. Moreover, all but G216R respond to vitamin B6, as shown by their increased specific activity and expression level in a cellular disease model. A global analysis of data unraveled a possible inverse correlation between the degree of destabilization/misfolding induced by a mutation and the extent of B6 responsiveness. These results provide a first explanation of factors influencing B6 response in PH1, a model possibly valuable for other rare diseases caused by protein deficits.


Asunto(s)
Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/genética , Mutación , Transaminasas/genética , Vitamina B 6/farmacología , Animales , Células CHO , Cricetulus , Predisposición Genética a la Enfermedad , Humanos , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/enzimología , Fenotipo , Pliegue de Proteína , Multimerización de Proteína , Relación Estructura-Actividad , Transaminasas/química , Transaminasas/deficiencia , Vitamina B 6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...