Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(9): 095701, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202852

RESUMEN

The experimental study of the CO_{2} phase diagram is hampered by strong kinetic effects leading to wide regions of metastability and to large uncertainties in the location of some phase boundaries. Here, we determine CO_{2}'s thermodynamic phase boundaries by means of ab initio calculations of the Gibbs free energy of several solid phases of CO_{2} up to 50 Gigapascals. Temperature effects are included in the quasiharmonic approximation. Contrary to previous suggestions, we find that the boundary between molecular forms and the nonmolecular phase V has, indeed, a positive slope and starts at 21.5 GPa at T=0 K. A triple point between phase IV, V, and the liquid phase is found at 35 GPa and 1600 K, indicating a broader region of stability for the nonmolecular form than previously thought. The experimentally determined boundary line between CO_{2}-II and CO_{2}-IV phases is reproduced by our calculations, indicating that kinetic effects do not play a major role in that particular transition. Our results also show that CO_{2}-III is stabilized at high temperature and its stability region coincides with the P-T conditions where phase VII has been reported experimentally; instead, phase II is the most stable molecular phase at low temperatures, extending its region of stability to every P-T condition where phase III is reported experimentally.

2.
Proc Natl Acad Sci U S A ; 109(14): 5176-9, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431594

RESUMEN

Non molecular CO(2) has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO(2) includes several non molecular phases above 30 GPa. Among these, the first discovered was CO(2)-V which appeared silica-like. Theoretical studies suggested that the structure of CO(2)-V is related to that of ß-cristobalite with tetrahedral carbon coordination similar to silicon in SiO(2), but reported experimental structural studies have been controversial. We have investigated CO(2)-V obtained from molecular CO(2) at 40-50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO(2) ß-cristobalite, space group I42d, in which the CO(4) tetrahedra are tilted by 38.4° about the c-axis. The existence of CO(4) tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO(2) and potential implications for Earth and planetary interiors.

3.
J Synchrotron Radiat ; 16(Pt 6): 769-72, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19844012

RESUMEN

Developments in continuous and pulsed laser-heating techniques, and finite-element calculations for diamond anvil cell experiments are reported. The methods involve the use of time-resolved (5 ns gated) incandescent light temperature measurements to determine the time dependence of heat fluxes, while near-IR incandescent light temperature measurements allow temperature measurements to as low as 500 K. Further optimization of timing in pulsed laser heating together with sample engineering will provide additional improvements in data collection in very high P-T experiments.

4.
Phys Rev Lett ; 100(16): 163002, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18518195

RESUMEN

Carbon dioxide (CO2) has been recently reported to possess an amorphous form, named "carbonia," structurally similar to other group-IV oxide glasses. By combining ab initio constant pressure molecular dynamics, density-functional perturbation theory, and experimental IR spectra, we show that carbonia, and possibly also phase VI, is not SiO2-like, and that instead it is partially tetrahedral containing also a sizable amount of carbon in threefold coordination, but no sixfold octahedral coordination. Enthalpic considerations suggest that carbonia is a metastable intermediate state of the transformation of molecular CO2 into fully tetrahedral phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...