Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474137

RESUMEN

Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.


Asunto(s)
Luteína , Microalgas , Humanos , Antioxidantes , Biomasa
2.
Mar Drugs ; 21(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37233486

RESUMEN

Cold environments include deep ocean, alpine, and polar areas. Even if the cold conditions are harsh and extreme for certain habitats, various species have been adapted to survive in them. Microalgae are among the most abundant microbial communities which have adapted to live in low light, low temperature, and ice coverage conditions typical of cold environments by activating different stress-responsive strategies. These species have been shown to have bioactivities with possible exploitation capabilities for human applications. Even if they are less explored compared to species living in more accessible sites, various activities have been highlighted, such as antioxidant and anticancer activities. This review is focused on summarizing these bioactivities and discussing the possible exploitation of cold-adapted microalgae. Thanks to the possibility of mass cultivating algae in controlled photobioreactors, eco-sustainable exploitation is in fact possible by sampling a few microalgal cells without impacting the environment.


Asunto(s)
Microalgas , Humanos , Ecosistema , Frío , Antioxidantes , Plantas , Biotecnología
3.
Antioxidants (Basel) ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36978958

RESUMEN

Marine organisms have been reported to be valuable sources of bioactive molecules that have found applications in different industrial fields. From organism sampling to the identification and bioactivity characterization of a specific compound, different steps are necessary, which are time- and cost-consuming. Thanks to the advent of the -omic era, numerous genome, metagenome, transcriptome, metatranscriptome, proteome and microbiome data have been reported and deposited in public databases. These advancements have been fundamental for the development of in silico strategies for basic and applied research. In silico studies represent a convenient and efficient approach to the bioactivity prediction of known and newly identified marine molecules, reducing the time and costs of "wet-lab" experiments. This review focuses on in silico approaches applied to bioactive molecule discoveries from marine organisms. When available, validation studies reporting a bioactivity assay to confirm the presence of an antioxidant molecule or enzyme are reported, as well. Overall, this review suggests that in silico approaches can offer a valuable alternative to most expensive approaches and proposes them as a little explored field in which to invest.

4.
Mar Drugs ; 21(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827167

RESUMEN

Microalgae produce a plethora of primary and secondary metabolites with possible applications in several market sectors, including cosmetics, human nutrition, aquaculture, biodiesel production and treatment/prevention of human diseases. Diatoms, in particular, are the most diversified microalgal group, many species of which are known to have anti-cancer, anti-oxidant, anti-diabetes, anti-inflammatory and immunomodulatory properties. Compounds responsible for these activities are often still unknown. The aim of this study was to de novo sequence the full transcriptome of two strains of the diatom Asterionellopsis thurstonii, sampled from two different locations and cultured in both control and phosphate starvation conditions. We used an RNA-sequencing approach to in silico identify transcripts potentially involved in the synthesis/degradation of compounds with anti-cancer and immunomodulatory properties. We identified transcript coding for L-asparaginase I, polyketide cyclase/dehydrase, bifunctional polyketide phosphatase/kinase, 1-deoxy-D-xylulose-5-phosphate synthase (fragment), inositol polyphosphate 5-phosphatase INPP5B/F, catechol O-Methyltransferase, digalactosyldiacylglycerol synthase (DGD1), 1,2-diacylglycerol-3-beta-galactosyltransferase and glycerolphosphodiester phosphodiesterase. Differential expression analysis also allowed to identify in which culturing condition these enzymes are more expressed. Overall, these data give new insights on the annotation of diatom genes, enzymatic pathways involved in the generation of bioactive molecules and possible exploitation of Asterionellopsis thurstonii.


Asunto(s)
Diatomeas , Policétidos , Humanos , Diatomeas/metabolismo , Transcriptoma , Análisis de Secuencia de ARN , Óxido Nítrico Sintasa/metabolismo , Policétidos/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674949

RESUMEN

Prostate cancer is the most common cancer in men, with over 52,000 new cases diagnosed every year. Diagnostics and early treatment are potentially hindered by variations in screening protocols, still largely reliant on serum levels of acid phosphatase and prostate-specific antigen, with tumour diagnosis and grading relying on histopathological examination. Current treatment interventions vary in terms of efficacy, cost and severity of side effects, and relapse can be aggressive and resistant to the current standard of care. For these reasons, the scientific community is looking for new chemotherapeutic agents. This review reports compounds and extracts derived from marine organisms as a potential source of new drugs against prostate cancer. Whilst there are several marine-derived compounds against other cancers, such as multiple myeloma, leukemia, breast and lung cancer, already available in the market, the presently collated findings show how the marine environment can be considered to hold potential as a new drug source for prostate cancer, as well. This review presents information on compounds presently in clinical trials, as well as new compounds/extracts that may enter trials in the future. We summarise information regarding mechanisms of action and active concentrations.


Asunto(s)
Productos Biológicos , Neoplasias de la Próstata , Masculino , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias de la Próstata/patología , Antígeno Prostático Específico , Organismos Acuáticos
6.
Mar Drugs ; 22(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38248656

RESUMEN

Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.


Asunto(s)
Dinoflagelados , Animales , Humanos , Floraciones de Algas Nocivas , Acuicultura , Bioprospección , Biotecnología
7.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142196

RESUMEN

Melanoma is considered a multifactorial disease etiologically divided into melanomas related to sun exposure and those that are not, but also based on their mutational signatures, anatomic site, and epidemiology. The incidence of melanoma skin cancer has been increasing over the past decades with 132,000 cases occurring globally each year. Marine organisms have been shown to be an excellent source of natural compounds with possible bioactivities for human health applications. In this review, we report marine compounds from micro- and macro-organisms with activities in vitro and in vivo against melanoma, including the compound Marizomib, isolated from a marine bacterium, currently in phase III clinical trials for melanoma. When available, we also report active concentrations, cellular targets and mechanisms of action of the mentioned molecules. In addition, compounds used for UV protection and melanoma prevention from marine sources are discussed. This paper gives an overview of promising marine molecules which can be studied more deeply before clinical trials in the near future.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Organismos Acuáticos , Humanos , Incidencia , Melanoma/tratamiento farmacológico , Melanoma/etiología , Melanoma/prevención & control , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/prevención & control
8.
Mar Drugs ; 20(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877715

RESUMEN

Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.


Asunto(s)
Productos Biológicos , Neoplasias , Animales , Organismos Acuáticos/química , Bacterias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hongos/química , Inmunidad , Neoplasias/tratamiento farmacológico
9.
Genes (Basel) ; 12(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34680946

RESUMEN

YB-1 is a multifunctional protein overexpressed in many types of cancer. It is a crucial oncoprotein that regulates cancer cell progression and proliferation. Ubiquitously expressed in human cells, YB-1 protein functions are strictly dependent on its subcellular localization. In the cytoplasm, where YB-1 is primarily localized, it regulates mRNA translation and stability. However, in response to stress stimuli and activation of PI3K and RSK signaling, YB-1 moves to the nucleus acting as a prosurvival factor. YB-1 is reported to regulate many cellular signaling pathways in different types of malignancies. Furthermore, several observations also suggest that YB-1 is a sensor of oxidative stress and DNA damage. Here we show that YB-1 reduces PTEN intracellular levels thus leading to PI3K/Akt pathway activation. Remarkably, PTEN reduction mediated by YB-1 overexpression can be observed in human immortalized keratinocytes and HEK293T cells and cannot be reversed by proteasome inhibition. Real-time PCR data indicate that YB-1 silencing up-regulates the PTEN mRNA level. Collectively, these observations indicate that YB-1 negatively controls PTEN at the transcript level and its overexpression could confer survival and proliferative advantage to PTEN proficient cancer cells.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Células HEK293 , Células HaCaT , Humanos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína 1 de Unión a la Caja Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...