Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(2): 419-428, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35687874

RESUMEN

Biocatalysis is a key tool in both green chemistry and biorefinery fields. NOV1 is a dioxygenase that catalyzes the one-step, coenzyme-free oxidation of isoeugenol into vanillin and holds enormous biotechnological potential for the complete valorization of lignin as a sustainable starting material for biobased chemicals, polymers, and materials. This study integrates computational, kinetic, structural, and biophysical approaches to characterize a new NOV1 variant featuring improved activity and stability compared to those of the wild type. The S283F replacement results in a 2-fold increased turnover rate (kcat) for isoeugenol and a 4-fold higher catalytic efficiency (kcat/Km) for molecular oxygen compared to those of the wild type. Furthermore, the variant exhibits a half-life that is 20-fold higher than that of the wild type, which most likely relates to the enhanced stabilization of the iron cofactor in the active site. Molecular dynamics supports this view, revealing that the S283F replacement decreases the optimal pKa and favors conformations of the iron-coordinating histidines compatible with an increased level of binding to iron. Importantly, whole cells containing the S283F variant catalyze the conversion of ≤100 mM isoeugenol to vanillin, yielding >99% molar conversion yields within 24 h. This integrative strategy provided a new enzyme for biotechnological applications and mechanistic insights that will facilitate the future design of robust and efficient biocatalysts.


Asunto(s)
Dioxigenasas , Lignina , Hierro
2.
ACS Catal ; 12(9): 5022-5035, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-36567772

RESUMEN

Laccases are in increasing demand as innovative solutions in the biorefinery fields. Here, we combine mutagenesis with structural, kinetic, and in silico analyses to characterize the molecular features that cause the evolution of a hyperthermostable metallo-oxidase from the multicopper oxidase family into a laccase (k cat 273 s-1 for a bulky aromatic substrate). We show that six mutations scattered across the enzyme collectively modulate dynamics to improve the binding and catalysis of a bulky aromatic substrate. The replacement of residues during the early stages of evolution is a stepping stone for altering the shape and size of substrate-binding sites. Binding sites are then fine-tuned through high-order epistasis interactions by inserting distal mutations during later stages of evolution. Allosterically coupled, long-range dynamic networks favor catalytically competent conformational states that are more suitable for recognizing and stabilizing the aromatic substrate. This work provides mechanistic insight into enzymatic and evolutionary molecular mechanisms and spots the importance of iterative experimental and computational analyses to understand local-to-global changes.

3.
Nat Commun ; 13(1): 7195, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418310

RESUMEN

Various 4-alkylphenols can be easily obtained through reductive catalytic fractionation of lignocellulosic biomass. Selective dehydrogenation of 4-n-propylguaiacol results in the formation of isoeugenol, a valuable flavor and fragrance molecule and versatile precursor compound. Here we present the engineering of a bacterial eugenol oxidase to catalyze this reaction. Five mutations, identified from computational predictions, are first introduced to render the enzyme more thermostable. Other mutations are then added and analyzed to enhance chemoselectivity and activity. Structural insight demonstrates that the slow catalytic activity of an otherwise promising enzyme variant is due the formation of a slowly-decaying covalent substrate-flavin cofactor adduct that can be remedied by targeted residue changes. The final engineered variant comprises eight mutations, is thermostable, displays good activity and acts as a highly chemoselective 4-n-propylguaiacol oxidase. We lastly use our engineered biocatalyst in an illustrative preparative reaction at gram-scale. Our findings show that a natural enzyme can be redesigned into a tailored biocatalyst capable of valorizing lignin-based monophenols.


Asunto(s)
Lignina , Oxidorreductasas , Lignina/química , Oxidorreductasas/genética , Eugenol , Hidrolasas
4.
Methods Mol Biol ; 2397: 249-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34813068

RESUMEN

Directed evolution is the most recognized methodology for enzyme engineering. The main drawback resides in its random nature and in the limited sequence exploration; both require screening of thousands (if not millions) of variants to achieve a target function. Computer-driven approaches can limit laboratorial screening to a few hundred candidates, enabling and accelerating the development of industrial enzymes. In this book chapter, the technology adopted at Zymvol is described. An overview of the current development and future directions in the company is also provided.


Asunto(s)
Ingeniería de Proteínas , Biocatálisis , Evolución Molecular Dirigida , Enzimas/genética , Enzimas/metabolismo , Industrias , Tecnología
6.
J Chem Theory Comput ; 13(3): 1462-1467, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28187256

RESUMEN

To meet the very specific requirements demanded by industry, proteins must be appropriately tailored. Engineering laccases, to improve the oxidation of small molecules, with applications in multiple fields, is, however, a difficult task. Most efforts have concentrated on increasing the redox potential of the enzyme, but in recent work, we have pursued an alternate strategy to engineering these biocatalysts. In particular, we have found that redesigning substrate binding at the T1 pocket, guided by in silico methodologies, to be a more consistent option. In this work, we evaluate the robustness of our computational approach to estimate activity, emphasizing the importance of the binding event in laccase reactivity. Strengths and weaknesses of the protocol are discussed along with its potential for scoring large numbers of protein sequences and thus its significance in protein engineering.


Asunto(s)
Lacasa/metabolismo , Ingeniería de Proteínas , Cinética , Lacasa/química , Lacasa/genética , Simulación de Dinámica Molecular , Oxidación-Reducción , Fenol/química , Fenol/metabolismo , Unión Proteica , Conformación Proteica
7.
Chempluschem ; 82(4): 607-614, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31961583

RESUMEN

Systems featuring a multi-copper oxidase associated with transition-metal complexes can be used to perform oxidation reactions in mild conditions. Here, a strategy is presented for achieving a controlled orientation of a ruthenium-polypyridyl graft at the surface of a fungal laccase. Laccase variants are engineered with unique surface-accessible lysine residues. Distinct ruthenium-polypyridyl-modified laccases are obtained by the reductive alkylation of lysine residues precisely located relative to the T1 copper centre of the enzyme. In none of these hybrids does the presence of the graft compromise the catalytic efficiency of the enzyme on the substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Furthermore, the efficiency of the hybrids in olefin oxidation coupled to the light-driven reduction of O2 is highly dependent on the location of the graft at the enzyme surface. Simulated RuII -CuII electron coupling values and distances fit well the observed reactivity and could be used to guide future hybrid designs.

8.
J Phys Chem Lett ; 6(8): 1447-53, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-26263150

RESUMEN

Understanding the molecular determinants of enzyme performance is of primary importance for the rational design of ad hoc mutants. A novel approach, which combines efficient conformational sampling and quick reactivity scoring, is used here to shed light on how substrate oxidation was improved during the directed evolution experiment of a fungal laccase (from Pycnoporus cinnabarinus), an industrially relevant class of oxidoreductases. It is found that the enhanced activity of the evolved enzyme is mainly the result of substrate arrangement in the active site, with no important change in the redox potential of the T1 copper. Mutations at the active site shift the binding mode into a more buried substrate position and provide a more favorable electrostatic environment for substrate oxidation. As a consequence, engineering the binding event seems to be a viable way to in silico evolution of oxidoreductases.


Asunto(s)
Proteínas Fúngicas/química , Lacasa/química , Simulación de Dinámica Molecular , Dominio Catalítico , Cobre/química , Hongos , Oxidación-Reducción , Unión Proteica , Ingeniería de Proteínas
9.
J Am Chem Soc ; 136(29): 10325-39, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24991732

RESUMEN

The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or ß hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe-histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or ß chains, prior to the quaternary R-T and T-R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe-His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem. 2002, 98, 149). Experimentally, the νFeHis evolution is faster for ß than for α chains, and pump-probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 µs for ß but not for α hemes, an interval previously shown to be the first step in the R-T transition. In the α chain νFeHis dropped sharply at 20 µs, the final step in the R-T transition. The time courses are fully consistent with recent computational mapping of the R-T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested.


Asunto(s)
Biología Computacional/métodos , Hemo/química , Hemoglobina A/química , Espectrometría Raman/métodos , Globinas alfa/química , Globinas beta/química , Regulación Alostérica , Mesoporfirinas/química , Modelos Moleculares , Estructura Cuaternaria de Proteína
10.
J Phys Chem A ; 115(45): 12864-78, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21761863

RESUMEN

The source function (SF) introduced in late 90s by Bader and Gatti quantifies the influence of each atom in a system in determining the amount of electron density at a given point, regardless of the atom's remote or close location with respect to the point. The SF may thus be attractive for studying directly in the real space somewhat elusive molecular properties, such as "electron conjugation" and "aromaticity", that lack rigorous definitions as they are not directly associated to quantum-mechanical observables. In this work, the results of a preliminary test aimed at understanding whether the SF descriptor is capable to reveal electron delocalization effects are corroborated by further examination of the previously investigated benzene, 1,3-cyclohexadiene, and cyclohexene series and by extending the analysis to some benchmark organic systems with different unsaturated bond patterns. The SF can actually reveal, order, and quantify π-electron delocalization effects for formal double, single conjugated, and allylic bonds, in terms of the influence of distant atoms on the electron density at given bond critical points. In polycyclic aromatic hydrocarbons, the SF neatly reveals the mutual influence of the benzenoid subunits. In naphthalene it provides a rationale for the changes observed in the local aromatic character of one ring when the other is partially hydrogenated. The SF analysis describes instead biphenyl as made up by two weakly interacting benzene rings, only slightly perturbed by the combination of mutual steric and electronic effects. Eventually, a new SF-based indicator of local aromaticity is introduced, which shows excellent correlation with the aromatic index developed by Matta and Hernández-Trujillo, based on the delocalization indices. At variance with this latter and other commonly employed quantum-mechanical (local) aromaticity descriptors, the SF-based indicator does not require the knowledge of the pair density, nor the system wave function, being therefore promising for applications to experimentally derived charge density distributions.


Asunto(s)
Electrones , Teoría Cuántica , Benceno/química , Ciclohexenos/química , Hidrocarburos Policíclicos Aromáticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...