Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nucleic Acids Res ; 52(W1): W306-W312, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38686797

RESUMEN

Residue interaction networks (RINs) are a valuable approach for representing contacts in protein structures. RINs have been widely used in various research areas, including the analysis of mutation effects, domain-domain communication, catalytic activity, and molecular dynamics simulations. The RING server is a powerful tool to calculate non-covalent molecular interactions based on geometrical parameters, providing high-quality and reliable results. Here, we introduce RING 4.0, which includes significant enhancements for identifying both covalent and non-covalent bonds in protein structures. It now encompasses seven different interaction types, with the addition of π-hydrogen, halogen bonds and metal ion coordination sites. The definitions of all available bond types have also been refined and RING can now process the complete PDB chemical component dictionary (over 35000 different molecules) which provides atom names and covalent connectivity information for all known ligands. Optimization of the software has improved execution time by an order of magnitude. The RING web server has been redesigned to provide a more engaging and interactive user experience, incorporating new visualization tools. Users can now visualize all types of interactions simultaneously in the structure viewer and network component. The web server, including extensive help and tutorials, is available from URL: https://ring.biocomputingup.it/.


Asunto(s)
Programas Informáticos , Proteínas/química , Proteínas/metabolismo , Internet , Ligandos , Conformación Proteica
2.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474241

RESUMEN

Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.


Asunto(s)
Proteínas , Secuencias Repetidas en Tándem , Proteínas/química , Secuencia de Aminoácidos
3.
Bioinform Adv ; 4(1): vbae043, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545087

RESUMEN

We present CAFA-evaluator, a powerful Python program designed to evaluate the performance of prediction methods on targets with hierarchical concept dependencies. It generalizes multi-label evaluation to modern ontologies where the prediction targets are drawn from a directed acyclic graph and achieves high efficiency by leveraging matrix computation and topological sorting. The program requirements include a small number of standard Python libraries, making CAFA-evaluator easy to maintain. The code replicates the Critical Assessment of protein Function Annotation (CAFA) benchmarking, which evaluates predictions of the consistent subgraphs in Gene Ontology. Owing to its reliability and accuracy, the organizers have selected CAFA-evaluator as the official CAFA evaluation software. Availability and implementation: https://pypi.org/project/cafaeval.

4.
Nucleic Acids Res ; 52(D1): D536-D544, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37904608

RESUMEN

The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network-all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
5.
J Struct Biol ; 215(4): 108023, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652396

RESUMEN

Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.


Asunto(s)
Proteínas , Secuencias Repetidas en Tándem , Proteínas/genética , Proteínas/química , Secuencias Repetidas en Tándem/genética , Secuencia de Aminoácidos
6.
J Struct Biol ; 215(3): 108001, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467824

RESUMEN

Structured tandem repeats proteins (STRPs) are a specific kind of tandem repeat proteins characterized by a modular and repetitive three-dimensional structure arrangement. The majority of STRPs adopt solenoid structures, but with the increasing availability of experimental structures and high-quality predicted structural models, more STRP folds can be characterized. Here, we describe "Box repeats", an overlooked STRP fold present in the DNA sliding clamp processivity factors, which has eluded classification although structural data has been available since the late 1990s. Each Box repeat is a ß⍺ßßß module of about 60 residues, which forms a class V "beads-on-a-string" type STRP. The number of repeats present in processivity factors is organism dependent. Monomers of PCNA proteins in both Archaea and Eukarya have 4 repeats, while the monomers of bacterial beta-sliding clamps have 6 repeats. This new repeat fold has been added to the RepeatsDB database, which now provides structural annotation for 66 Box repeat proteins belonging to different organisms, including viruses.


Asunto(s)
Proteínas , Secuencias Repetidas en Tándem , Proteínas/química , Secuencias Repetidas en Tándem/genética , ADN/genética
7.
Nucleic Acids Res ; 51(W1): W62-W69, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37246642

RESUMEN

Intrinsic disorder (ID) in proteins is well-established in structural biology, with increasing evidence for its involvement in essential biological processes. As measuring dynamic ID behavior experimentally on a large scale remains difficult, scores of published ID predictors have tried to fill this gap. Unfortunately, their heterogeneity makes it difficult to compare performance, confounding biologists wanting to make an informed choice. To address this issue, the Critical Assessment of protein Intrinsic Disorder (CAID) benchmarks predictors for ID and binding regions as a community blind-test in a standardized computing environment. Here we present the CAID Prediction Portal, a web server executing all CAID methods on user-defined sequences. The server generates standardized output and facilitates comparison between methods, producing a consensus prediction highlighting high-confidence ID regions. The website contains extensive documentation explaining the meaning of different CAID statistics and providing a brief description of all methods. Predictor output is visualized in an interactive feature viewer and made available for download in a single table, with the option to recover previous sessions via a private dashboard. The CAID Prediction Portal is a valuable resource for researchers interested in studying ID in proteins. The server is available at the URL: https://caid.idpcentral.org.


Asunto(s)
Biología Molecular , Proteínas , Benchmarking , Consenso , Proteínas/química , Programas Informáticos , Proteínas Intrínsecamente Desordenadas
8.
Curr Protoc ; 3(5): e764, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37184204

RESUMEN

CoDNaS (http://ufq.unq.edu.ar/codnas/) and CoDNaS-Q (http://ufq.unq.edu.ar/codnasq) are repositories of proteins with different degrees of conformational diversity. Following the ensemble nature of the native state, conformational diversity represents the structural differences between the conformers in the ensemble. Each entry in CoDNaS and CoDNaS-Q contains a redundant collection of experimentally determined conformers obtained under different conditions. These conformers represent snapshots of the protein dynamism. While CoDNaS contains examples of conformational diversity at the tertiary level, a recent development, CoDNaS-Q, contains examples at the quaternary level. In the emerging age of accurate protein structure prediction by machine learning approaches, many questions remain open regarding the characterization of protein dynamism. In this context, most bioinformatics resources take advantage of distinct features derived from protein alignments, however, the complexity and heterogeneity of information makes it difficult to recover reliable biological signatures. Here we present five protocols to explore tertiary and quaternary conformational diversity at the individual protein level as well as for the characterization of the distribution of conformational diversity at the protein family level in a phylogenetic context. These protocols can provide curated protein families with experimentally known conformational diversity, facilitating the exploration of sequence determinants of protein dynamism. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assessing conformational diversity with CoDNaS Alternate Protocol 1: Assessing conformational diversity at the quaternary level with CoDNaS-Q Basic Protocol 2: Exploring conformational diversity in a protein family Alternate Protocol 2: Exploring quaternary conformational diversity in a protein family Basic Protocol 3: Representing conformational diversity in a phylogenetic context.


Asunto(s)
Proteínas , Filogenia , Bases de Datos de Proteínas , Conformación Proteica , Proteínas/genética , Proteínas/química
9.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079739

RESUMEN

RING-PyMOL is a plugin for PyMOL providing a set of analysis tools for structural ensembles and molecular dynamic simulations. RING-PyMOL combines residue interaction networks, as provided by the RING software, with structural clustering to enhance the analysis and visualization of the conformational complexity. It combines precise calculation of non-covalent interactions with the power of PyMOL to manipulate and visualize protein structures. The plugin identifies and highlights correlating contacts and interaction patterns that can explain structural allostery, active sites, and structural heterogeneity connected with molecular function. It is easy to use and extremely fast, processing and rendering hundreds of models and long trajectories in seconds. RING-PyMOL generates a number of interactive plots and output files for use with external tools. The underlying RING software has been improved extensively. It is 10 times faster, can process mmCIF files and it identifies typed interactions also for nucleic acids. AVAILABILITY AND IMPLEMENTATION: https://github.com/BioComputingUP/ring-pymol.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Proteínas/química , Análisis por Conglomerados , Dominio Catalítico
10.
Nucleic Acids Res ; 51(D1): D438-D444, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36416266

RESUMEN

The MobiDB database (URL: https://mobidb.org/) is a knowledge base of intrinsically disordered proteins. MobiDB aggregates disorder annotations derived from the literature and from experimental evidence along with predictions for all known protein sequences. MobiDB generates new knowledge and captures the functional significance of disordered regions by processing and combining complementary sources of information. Since its first release 10 years ago, the MobiDB database has evolved in order to improve the quality and coverage of protein disorder annotations and its accessibility. MobiDB has now reached its maturity in terms of data standardization and visualization. Here, we present a new release which focuses on the optimization of user experience and database content. The major advances compared to the previous version are the integration of AlphaFoldDB predictions and the re-implementation of the homology transfer pipeline, which expands manually curated annotations by two orders of magnitude. Finally, the entry page has been restyled in order to provide an overview of the available annotations along with two separate views that highlight structural disorder evidence and functions associated with different binding modes.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Secuencia de Aminoácidos , Bases del Conocimiento , Conformación Proteica
11.
Protein Sci ; 31(11): e4466, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36210722

RESUMEN

Intrinsically disordered regions (IDRs) defying the traditional protein structure-function paradigm have been difficult to analyze. The availability of accurate structure predictions on a large scale in AlphaFoldDB offers a fresh perspective on IDR prediction. Here, we establish three baselines for IDR prediction from AlphaFoldDB models based on the recent CAID dataset. Surprisingly, AlphaFoldDB is highly competitive for predicting both IDRs and conditionally folded binding regions, demonstrating the plasticity of the disorder to structure continuum.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína
12.
Bioinformatics ; 38(21): 4959-4961, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36111870

RESUMEN

SUMMARY: A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins. It features a curated collection of redundant protein structures with known quaternary structure. CoDNaS-Q integrates relevant annotations that allow researchers to identify and explore the extent and possible reasons of conformational diversity in homooligomeric protein complexes. AVAILABILITY AND IMPLEMENTATION: CoDNaS-Q is freely accessible at http://ufq.unq.edu.ar/codnasq/ or https://codnas-q.bioinformatica.org/home. The data can be retrieved from the website. The source code of the database can be downloaded from https://github.com/SfrRonaldo/codnas-q.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Conformación Proteica , Bases de Datos Factuales
13.
Nucleic Acids Res ; 50(W1): W651-W656, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35554554

RESUMEN

Residue interaction networks (RINs) are used to represent residue contacts in protein structures. Thanks to the advances in network theory, RINs have been proved effective as an alternative to coordinate data in the analysis of complex systems. The RING server calculates high quality and reliable non-covalent molecular interactions based on geometrical parameters. Here, we present the new RING 3.0 version extending the previous functionality in several ways. The underlying software library has been re-engineered to improve speed by an order of magnitude. RING now also supports the mmCIF format and provides typed interactions for the entire PDB chemical component dictionary, including nucleic acids. Moreover, RING now employs probabilistic graphs, where multiple conformations (e.g. NMR or molecular dynamics ensembles) are mapped as weighted edges, opening up new ways to analyze structural data. The web interface has been expanded to include a simultaneous view of the RIN alongside a structure viewer, with both synchronized and clickable. Contact evolution across models (or time) is displayed as a heatmap and can help in the discovery of correlating interaction patterns. The web server, together with an extensive help and tutorial, is available from URL: https://ring.biocomputingup.it/.


Asunto(s)
Proteínas , Programas Informáticos , Internet , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Probabilidad
14.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 144-151, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102880

RESUMEN

Intrinsically disordered regions (IDRs) lacking a fixed three-dimensional protein structure are widespread and play a central role in cell regulation. Only a small fraction of IDRs have been functionally characterized, with heterogeneous experimental evidence that is largely buried in the literature. Predictions of IDRs are still difficult to estimate and are poorly characterized. Here, an overview of the publicly available knowledge about IDRs is reported, including manually curated resources, deposition databases and prediction repositories. The types, scopes and availability of the various resources are analyzed, and their complementarity and overlap are highlighted. The volume of information included and the relevance to the field of structural biology are compared.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Bases de Datos Factuales , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Conformación Proteica
15.
Biomolecules ; 12(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35053240

RESUMEN

Biomolecular condensates challenge the classical concepts of molecular recognition. The variable composition and heterogeneous conformations of liquid-like protein droplets are bottlenecks for high-resolution structural studies. To obtain atomistic insights into the organization of these assemblies, here we have characterized the conformational ensembles of specific disordered complexes, including those of droplet-driving proteins. First, we found that these specific complexes exhibit a high degree of conformational heterogeneity. Second, we found that residues forming contacts at the interface also sample many conformations. Third, we found that different patterns of contacting residues form the specific interface. In addition, we observed a wide range of sequence motifs mediating disordered interactions, including charged, hydrophobic and polar contacts. These results demonstrate that selective recognition can be realized by variable patterns of weakly defined interaction motifs in many different binding configurations. We propose that these principles also play roles in determining the selectivity of biomolecular condensates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica
16.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850135

RESUMEN

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Internet , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , ARN/genética , ARN/metabolismo
17.
Nucleic Acids Res ; 50(D1): D509-D517, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791357

RESUMEN

Fuzzy interactions are specific, variable contacts between proteins and other biomolecules (proteins, DNA, RNA, small molecules) formed in accord to the cellular context. Fuzzy interactions have recently been demonstrated to regulate biomolecular condensates generated by liquid-liquid phase separation. The FuzDB v4.0 database (https://fuzdb.org) assembles experimentally identified examples of fuzzy interactions, where disordered regions mediate functionally important, context-dependent contacts between the partners in stoichiometric and higher-order assemblies. The new version of FuzDB establishes cross-links with databases on structure (PDB, BMRB, PED), function (ELM, UniProt) and biomolecular condensates (PhaSepDB, PhaSePro, LLPSDB). FuzDB v4.0 is a source to decipher molecular basis of complex cellular interaction behaviors, including those in protein droplets.


Asunto(s)
ADN/metabolismo , Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , ADN/química , ADN/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Anotación de Secuencia Molecular , Transición de Fase , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Relación Estructura-Actividad
18.
Front Cell Dev Biol ; 9: 690397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568316

RESUMEN

We describe, for the first time, a new splice variant of the human TGF-ß type II receptor (TßRII). The new transcript lacks 149 nucleotides, resulting in a frameshift and the emergence of an early stop codon, rendering a truncated mature protein of 57 amino acids. The predicted protein, lacking the transmembrane domain and with a distinctive 13-amino-acid stretch at its C-terminus, was named TßRII-Soluble Endogenous (TßRII-SE). Binding predictions indicate that the novel 13-amino-acid stretch interacts with all three TGF-ß cognate ligands and generates a more extensive protein-protein interface than TßRII. TßRII-SE and human IgG1 Fc domain were fused in frame in a lentiviral vector (Lv) for further characterization. With this vector, we transduced 293T cells and purified TßRII-SE/Fc by A/G protein chromatography from conditioned medium. Immunoblotting revealed homogeneous bands of approximately 37 kDa (reduced) and 75 kDa (non-reduced), indicating that TßRII-SE/Fc is secreted as a disulfide-linked homodimer. Moreover, high-affinity binding of TßRII-SE to the three TGF-ß isoforms was confirmed by surface plasmon resonance (SPR) analysis. Also, intrahepatic delivery of Lv.TßRII-SE/Fc in a carbon tetrachloride-induced liver fibrosis model revealed amelioration of liver injury and fibrosis. Our results indicate that TßRII-SE is a novel member of the TGF-ß signaling pathway with distinctive characteristics. This novel protein offers an alternative for the prevention and treatment of pathologies caused by the overproduction of TGF-ß ligands.

19.
J Mol Biol ; 433(9): 166900, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33647288

RESUMEN

A large fraction of peptides or protein regions are disordered in isolation and fold upon binding. These regions, also called MoRFs, SLiMs or LIPs, are often associated with signaling and regulation processes. However, despite their importance, only a limited number of examples are available in public databases and their automatic detection at the proteome level is problematic. Here we present FLIPPER, an automatic method for the detection of structurally linear sub-regions or peptides that interact with another chain in a protein complex. FLIPPER is a random forest classification that takes the protein structure as input and provides the propensity of each amino acid to be part of a LIP region. Models are built taking into consideration structural features such as intra- and inter-chain contacts, secondary structure, solvent accessibility in both bound and unbound state, structural linearity and chain length. FLIPPER is accurate when evaluated on non-redundant independent datasets, 99% precision and 99% sensitivity on PixelDB-25 and 87% precision and 88% sensitivity on DIBS-25. Finally, we used FLIPPER to process the entire Protein Data Bank and identified different classes of LIPs based on different binding modes and partner molecules. We provide a detailed description of these LIP categories and show that a large fraction of these regions are not detected by disorder predictors. All FLIPPER predictions are integrated in the MobiDB 4.0 database.


Asunto(s)
Algoritmos , Bases de Datos de Proteínas , Péptidos/química , Péptidos/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Conjuntos de Datos como Asunto , Humanos , Modelos Moleculares , Ácidos Nucleicos/química , Unión Proteica , Estructura Secundaria de Proteína
20.
Nucleic Acids Res ; 49(D1): D404-D411, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33305318

RESUMEN

The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Humanos , Motor de Búsqueda , Proteína p53 Supresora de Tumor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...