Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Antimicrob Agents Chemother ; : e0042024, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780261

RESUMEN

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.

2.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299813

RESUMEN

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Asunto(s)
Ciervos , Rumen , Humanos , Animales , Anaerobiosis , Rumen/microbiología , Herbivoria , Hongos/genética , Rumiantes
4.
Nat Commun ; 14(1): 3798, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365172

RESUMEN

Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.


Asunto(s)
Micobioma , Animales , Micobioma/genética , Filogenia , Heces/microbiología , Sistema Digestivo , Evolución Biológica , Mamíferos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37170869

RESUMEN

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Asunto(s)
Ácidos Grasos , Rumen , Animales , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Bacterias Gramnegativas , Hidrógeno
6.
JHEP Rep ; 5(4): 100664, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36908748

RESUMEN

Background & Aims: Patterns of liver HBV antigen expression have been described but not quantified at single-cell resolution. We applied quantitative techniques to liver biopsies from individuals with chronic hepatitis B and evaluated sampling heterogeneity, effects of disease stage, and nucleos(t)ide (NUC) treatment, and correlations between liver and peripheral viral biomarkers. Methods: Hepatocytes positive for HBV core and HBsAg were quantified using a novel four-plex immunofluorescence assay and image analysis. Biopsies were analysed from HBeAg-positive (n = 39) and HBeAg-negative (n = 75) participants before and after NUC treatment. To evaluate sampling effects, duplicate biopsies collected at the same time point were compared. Serum or plasma samples were evaluated for levels of HBV DNA, HBsAg, hepatitis B core-related antigen (HBcrAg), and HBV RNA. Results: Diffusely distributed individual HBV core+ cells and foci of HBsAg+ cells were the most common staining patterns. Hepatocytes positive for both HBV core and HBsAg were rare. Paired biopsies revealed large local variation in HBV staining within participants, which was confirmed in a large liver resection. NUC treatment was associated with a >100-fold lower median frequency of HBV core+ cells in HBeAg-positive and HBeAg-negative participants, whereas reductions in HBsAg+ cells were not statistically significant. The frequency of HBV core+ hepatocytes was lower in HBeAg-negative participants than in HBeAg-positive participants at all time points evaluated. Total HBV+ hepatocyte burden correlated with HBcrAg, HBV DNA, and HBV RNA only in baseline HBeAg-positive samples. Conclusions: Reductions in HBV core+ hepatocytes were associated with HBeAg-negative status and NUC treatment. Variation in HBV positivity within individual livers was extensive. Correlations between the liver and the periphery were found only between biomarkers likely indicative of cccDNA (HBV core+ and HBcrAg, HBV DNA, and RNA). Impact and Implications: HBV infects liver hepatocyte cells, and its genome can exist in two forms that express different sets of viral proteins: a circular genome called cccDNA that can express all viral proteins, including the HBV core and HBsAg proteins, or a linear fragment that inserts into the host genome typically to express HBsAg, but not HBV core. We used new techniques to determine the percentage of hepatocytes expressing the HBV core and HBsAg proteins in a large set of liver biopsies. We find that abundance and patterns of expression differ across patient groups and even within a single liver and that NUC treatment greatly reduces the number of core-expressing hepatocytes.

7.
Front Plant Sci ; 13: 1025698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340377

RESUMEN

Asexual Epichloë are endophytic fungi that form mutualistic symbioses with cool-season grasses, conferring to their hosts protection against biotic and abiotic stresses. Symbioses are maintained between grass generations as hyphae are vertically transmitted from parent to progeny plants through seed. However, endophyte transmission to the seed is an imperfect process where not all seeds become infected. The mechanisms underpinning the varying efficiencies of seed transmission are poorly understood. Host gene expression in response to Epichloë sp. LpTG-3 strain AR37 was examined within inflorescence primordia and ovaries of high and low endophyte transmission genotypes within a single population of perennial ryegrass. A genome-wide association study was conducted to identify population-level single nucleotide polymorphisms (SNPs) and associated genes correlated with vertical transmission efficiency. For low transmitters of AR37, upregulation of perennial ryegrass receptor-like kinases and resistance genes, typically associated with phytopathogen detection, comprised the largest group of differentially expressed genes (DEGs) in both inflorescence primordia and ovaries. DEGs involved in signaling and plant defense responses, such as cell wall modification, secondary metabolism, and reactive oxygen activities were also abundant. Transmission-associated SNPs were associated with genes for which gene ontology analysis identified "response to fungus" as the most significantly enriched term. Moreover, endophyte biomass as measured by quantitative PCR of Epichloë non-ribosomal peptide synthetase genes, was significantly lower in reproductive tissues of low-transmission hosts compared to high-transmission hosts. Endophyte seed-transmission efficiency appears to be influenced primarily by plant defense responses which reduce endophyte colonization of host reproductive tissues.

8.
Microorganisms ; 10(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36144352

RESUMEN

Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara).

9.
J Interprof Educ Pract ; 29: 100524, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35935734

RESUMEN

Telemedicine may provide equitable, accessible, and affordable healthcare to individuals globally. Recently tele-medicine has emerged as a vital resource for interdisciplinary healthcare professionals to provide critical medical care on the frontlines during the combined COVID-19 pandemic and the drug and opioid crisis. With the recent 2020 expansion of insurance coverage of telemedicine services by the United States Centers for Medicare & Medicaid Services, there has been an uptick in the need to understand how to comprehensively train physicians and health care professionals on telemedicine during a public health crisis. This study gathered 98 survey responses from interdisciplinary healthcare professionals regarding their telemedicine experience, focusing on trends of use with the drug and opioid crisis during the COVID-19 pandemic. The results demonstrate that during the COVID-19 pandemic, telemedicine provided a novel, innovative way to address an unmet need in healthcare and may aid to improve safe medication stewardship (SaMS) practice guidelines. Further expanded population-based research and randomized clinical trials are necessary to confirm these preliminary recommendations and form best practices for use in digital health and telemedicine. In addition, further studies will confirm the benefits of interdisciplinary healthcare professionals' engagement in harm reduction strategies via telemedicine to address improving safe medication use.

10.
Microbiome ; 10(1): 76, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35546409

RESUMEN

Although there is now an extensive understanding of the diversity of microbial life on earth through culture-independent metagenomic DNA sequence analyses, the isolation and cultivation of microbes remains critical to directly study them and confirm their metabolic and physiological functions, and their ecological roles. The majority of environmental microbes are as yet uncultured however; therefore, bringing these rare or poorly characterized groups into culture is a priority to further understand microbiome functions. Moreover, cultivated isolates may find utility in a range of applications, such as new probiotics, biocontrol agents, and agents for industrial processes. The growing abundance of metagenomic and meta-transcriptomic sequence information from a wide range of environments provides more opportunities to guide the isolation and cultivation of microbes of interest. In this paper, we discuss a range of successful methodologies and applications that have underpinned recent metagenome-guided isolation and cultivation of microbe efforts. These approaches include determining specific culture conditions to enrich for taxa of interest, to more complex strategies that specifically target the capture of microbial species through antibody engineering and genome editing strategies. With the greater degree of genomic information now available from uncultivated members, such as via metagenome-assembled genomes, the theoretical understanding of their cultivation requirements will enable greater possibilities to capture these and ultimately gain a more comprehensive understanding of the microbiomes. Video Abstract.


Asunto(s)
Metagenoma , Microbiota , Bacterias/genética , Genómica , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética
11.
J Hepatol ; 77(2): 332-343, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35218813

RESUMEN

BACKGROUND & AIMS: Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS: Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS: Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION: Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY: Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Antígeno CTLA-4 , ADN Viral/genética , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/genética , Humanos , Inflamación/genética
12.
JHEP Rep ; 4(1): 100388, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34950863

RESUMEN

BACKGROUND & AIMS: We aim to describe the liver immune microenvironment by analyzing liver biopsies from patients with chronic HBV infection (CHB). Host immune cell signatures and their corresponding localization were characterized by analyzing the intrahepatic transcriptome in combination with a custom multiplex immunofluorescence panel. METHOD: Matching FFPE and fresh frozen liver biopsies were collected from immune active patients within the open-label phase IV study GS-US-174-0149. RNA-Seq was conducted on 53 CHB liver biopsies from 46 patients. Twenty-eight of the 53 samples had matched FFPE biopsies and were stained with a 12-plex panel including cell segmentation, immune and viral biomarkers. Corresponding serum samples were screened using the MSD Human V-plex Screen Service to identify peripheral correlates for the immune microenvironment. RESULTS: Using unsupervised clustering of the transcriptome, we reveal two unique liver immune signatures classified as immune high and immune low based on the quantification of the liver infiltrate gene signatures. Multiplex immunofluorescence analysis demonstrated large periportal lymphoid aggregates in immune high samples consisting of CD4 and CD8 T cells, B cells and macrophages. Differentiation of the high and low immune microenvironments was independent of HBeAg status and peripheral viral antigen levels. In addition, longitudinal analysis indicates that treatment and normalization of ALT correlates with a decrease in liver immune infiltrate and inflammation. Finally, we screened a panel of peripheral biomarkers and identified ICAM-1 and CXCL10 as biomarkers that strongly correlate with these unique immune microenvironments. CONCLUSION: These data provide a description of immune phenotypes in patients with CHB and show that immune responses are downregulated in the liver following nucleotide analogue treatment. This may have important implications for both the safety and efficacy of immune modulator programs aimed at HBV cure. LAY SUMMARY: Liver biopsies from patients with chronic hepatitis B were submitted to RNA-Seq and multiplex immunofluorescence and identified two different liver immune microenvironments: immune high and immune low. Immune high patients showed elevated immune pathways, including interferon signaling pathways, and increase presence of immune cells. Longitudinal analysis of biopsies from treatment experienced patients showed that treatment correlates with a marked decrease in inflammation and these findings may have important implications for both safety and efficacy of immune modulator programs for HBV cure.

13.
Microbiol Resour Announc ; 10(26): e0031021, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197202

RESUMEN

Members of the Clostridiales R-7 group are abundant bacterial residents of the rumen microbiome; however, they are poorly characterized. We report the complete genome sequences of three members of the R-7 group, FE2010, FE2011, and XBB3002, isolated from the ruminal contents of pasture-grazed dairy cows in New Zealand.

14.
Anim Microbiome ; 3(1): 27, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795026

RESUMEN

BACKGROUND: The nutrition of calves from birth until weaning is predominantly from liquid (milk or milk-based) feeds. Liquid feed allowances are often restricted during artificial rearing to accelerate the development of the rumen by promoting solid feed intake. Liquid feeds bypass the rumen and are digested in the lower digestive tract, however, the influence of different types of milk feeds, and their allowances, on the calf hindgut microbiota is not well understood. In this study, faecal samples from 199 calves raised on three different allowances of milk replacer: 10% of initial bodyweight (LA), 20% of initial bodyweight (HA), and ad libitum (ADLIB), were collected just prior to weaning. Bacterial community structures and fermentation products were analysed, and their relationships with calf growth and health parameters were examined to identify potential interactions between diet, gut microbiota and calf performance. RESULTS: Differences in the total concentrations of short-chain fatty acids were not observed, but higher milk replacer allowances increased the concentrations of branched short-chain fatty acids and decreased acetate to propionate ratios. The bacterial communities were dominated by Ruminococcaceae, Lachnospiraceae and Bacteroides, and the bacterial diversity of the ADLIB diet group was greater than that of the other diet groups. Faecalibacterium was over three times more abundant in the ADLIB compared to the LA group, and its abundance correlated strongly with girth and body weight gains. Milk replacer intake correlated strongly with Peptococcus and Blautia, which also correlated with body weight gain. Bifidobacterium averaged less than 1% abundance, however its levels, and those of Clostridium sensu stricto 1, correlated strongly with initial serum protein levels, which are an indicator of colostrum intake and passive transfer of immunoglobulins in early life. CONCLUSIONS: Higher milk replacer intakes in calves increased hindgut bacterial diversity and resulted in bacterial communities and short chain fatty acid profiles associated with greater protein fermentation. Increased abundances of beneficial bacteria such as Faecalibacterium, were also observed, which may contribute to development and growth. Moreover, correlations between microbial taxa and initial serum protein levels suggest that colostrum intake in the first days of life may influence microbiota composition at pre-weaning.

15.
Sci Rep ; 11(1): 3836, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589656

RESUMEN

Anthelmintic treatment of adult ewes is widely practiced to remove parasite burdens in the expectation of increased ruminant productivity. However, the broad activity spectra of many anthelmintic compounds raises the possibility of impacts on the rumen microbiota. To investigate this, 300 grazing ewes were allocated to treatment groups that included a 100-day controlled release capsule (CRC) containing albendazole and abamectin, a long-acting moxidectin injection (LAI), and a non-treated control group (CON). Rumen bacterial, archaeal and protozoal communities at day 0 were analysed to identify 36 sheep per treatment with similar starting compositions. Microbiota profiles, including those for the rumen fungi, were then generated for the selected sheep at days 0, 35 and 77. The CRC treatment significantly impacted the archaeal community, and was associated with increased relative abundances of Methanobrevibacter ruminantium, Methanosphaera sp. ISO3-F5, and Methanomassiliicoccaceae Group 12 sp. ISO4-H5 compared to the control group. In contrast, the LAI treatment increased the relative abundances of members of the Veillonellaceae and resulted in minor changes to the bacterial and fungal communities by day 77. Overall, the anthelmintic treatments resulted in few, but highly significant, changes to the rumen microbiota composition.


Asunto(s)
Antihelmínticos/farmacología , Microbiota/efectos de los fármacos , Rumen/microbiología , Animales , Antihelmínticos/administración & dosificación , Biodiversidad , Duración de la Terapia , Disbiosis/etiología , Ovinos , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/parasitología
16.
Artículo en Inglés | MEDLINE | ID: mdl-31481448

RESUMEN

The global spread of multidrug-resistant enterobacteria warrants new strategies to combat these pathogens. One possible approach is the reconsideration of "old" antimicrobials, which remain effective after decades of use. Synthetic 5-nitrofurans such as furazolidone, nitrofurantoin, and nitrofurazone are such a class of antimicrobial drugs. Recent epidemiological data showed a very low prevalence of resistance to this antimicrobial class among clinical Escherichia coli isolates in various parts of the world, forecasting the increasing importance of its uses to battle antibiotic-resistant enterobacteria. However, although they have had a long history of clinical use, a detailed understanding of the 5-nitrofurans' mechanisms of action remains limited. Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains relatively significant antibacterial activity in the nitroreductase-deficient ΔnfsA ΔnfsBE. coli strain, indicating the presence of additional activating enzymes and/or antibacterial activity of the unreduced form. Using genome sequencing, genetic, biochemical, and bioinformatic approaches, we discovered a novel 5-nitrofuran-activating enzyme, AhpF, in E. coli The discovery of a new nitrofuran-reducing enzyme opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF expression.


Asunto(s)
Escherichia coli/enzimología , Nitrorreductasas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Furazolidona/química , Furazolidona/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Nitrofuranos/metabolismo , Nitrofuranos/farmacología , Nitrofurantoína/química , Nitrofurantoína/farmacología , Nitrofurazona/química , Nitrofurazona/farmacología , Nitrorreductasas/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
17.
Front Plant Sci ; 9: 1580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483280

RESUMEN

Vertical transmission of symbiotic Epichloë endophytes from host grasses into progeny seed is the primary mechanism by which the next generation of plants is colonized. This process is often imperfect, resulting in endophyte-free seedlings which may have poor ecological fitness if the endophyte confers protective benefits to its host. In this study, we investigated the influence of host genetics and environment on the vertical transmission of Epichloë festucae var. lolii strain AR37 in the temperate forage grass Lolium perenne. The efficiency of AR37 transmission into the seed of over 500 plant genotypes from five genetically diverse breeding populations was determined. In Populations I-III, which had undergone previous selection for high seed infection by AR37, mean transmission was 88, 93, and 92%, respectively. However, in Populations IV and V, which had not undergone previous selection, mean transmission was 69 and 70%, respectively. The transmission values, together with single-nucleotide polymorphism data obtained using genotyping-by-sequencing for each host, was used to develop a genomic prediction model for AR37 seed transmission. The predictive ability of the model was estimated at r = 0.54. While host genotype contributed greatly to differences in AR37 seed transmission, undefined environmental variables also contributed significantly to seed transmission across different years and geographic locations. There was evidence for a small host genotype-by-environment effect; however this was less pronounced than genotype or environment alone. Analysis of endophyte infection levels in parent plants within Populations I and IV revealed a loss of endophyte infection over time in Population IV only. This population also had lower average tiller infection frequencies than Population I, suggesting that AR37 failed to colonize all the daughter tillers and therefore seeds. However, we also observed that infection of seed by AR37 may fail during or after initiation of floral development from plants where all tillers remained endophyte-infected over time. While the effects of environment and host genotype on fungal endophyte transmission have been evaluated previously, this is the first study that quantifies the relative impacts of host genetics and environment on endophyte vertical transmission.

18.
Front Microbiol ; 9: 1231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971046

RESUMEN

In humans, aging is associated with changes in the gastrointestinal microbiota; these changes may contribute to the age-related increase in incidence of many chronic diseases, including Type 2 diabetes. The life expectancies of cats are increasing, and they are also exhibiting the same types of diseases. While there are some studies investigating the impacts of diets on gastrointestinal microbiota in young cats, the impacts of aging in older cats has not been explored. We followed a cohort of related kittens, maintained on two commercial diets (kibbled and canned) from weaning (8 weeks) to 5 years of age (260 weeks). We hypothesized that the long-term feeding of specific diet formats would (a) lead to microbial composition changes due to aging, (b) impact body composition, and (c) affect insulin sensitivity in the aging cat. We observed that both diet and age affected fecal microbial composition, and while age correlated with changes in body composition, diet had no effect on body composition. Similarly insulin sensitivity was not affected by age nor diet. 16S rRNA sequencing found unclassified Peptostreptococcaceae were prominent across all ages averaging 21.3% of gene sequence reads and were higher in cats fed canned diets (average of 25.7% of gene sequence reads, vs. 17.0% for kibble-fed cats). Age-related effects on body composition and insulin sensitivity may become apparent as the cats grow older; this study will continue to assess these parameters.

19.
Microbiologyopen ; 7(5): e00677, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29911322

RESUMEN

Interests in the impact of the gastrointestinal microbiota on health and wellbeing have extended from humans to that of companion animals. While relatively fewer studies to date have examined canine and feline gut microbiomes, analysis of the metagenomic DNA from fecal communities using next-generation sequencing technologies have provided insights into the microbes that are present, their function, and potential to contribute to overall host nutrition and health. As carnivores, healthy dogs and cats possess fecal microbiomes that reflect the generally higher concentrations of protein and fat in their diets, relative to omnivores and herbivores. The phyla Firmicutes and Bacteroidetes are highly abundant, and Fusobacteria, Actinobacteria, and Proteobacteria also feature prominently. Proteobacteria is the most diverse bacterial phylum and commonly features in the fecal microbiota of healthy dogs and cats, although its reputation is often sullied as its members include a number of well-known opportunistic pathogens, such as Escherichia coli, Salmonella, and Campylobacter, which may impact the health of the host and its owner. Furthermore, in other host species, high abundances of Proteobacteria have been associated with dysbiosis in hosts with metabolic or inflammatory disorders. In this review, we seek to gain further insight into the prevalence and roles of the Proteobacteria within the gastrointestinal microbiomes of healthy dogs and cats. We draw upon the growing number of metagenomic DNA sequence-based studies which now allow us take a culture-independent approach to examine the functions that this more minor, yet important, group contribute to normal microbiome function.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal , Animales , Gatos , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica
20.
Clin Cancer Res ; 23(12): 3158-3167, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619999

RESUMEN

Purpose: Tumor-associated PD-L1 expression is predictive of clinical response to PD-1-directed immunotherapy. However, PD-L1-negative patients may also respond to PD-1 checkpoint blockade, suggesting that other PD-1 ligands may be relevant to the clinical activity of these therapies. The prevalence of PD-L2, the other known ligand of PD-1, and its relationship to response to anti-PD-1 therapy were evaluated.Experimental Design: PD-L2 expression was assessed in archival tumor tissue from seven indications using a novel immunohistochemical assay. In addition, relationships between clinical response and PD-L2 status were evaluated in tumor tissues from patients with head and neck squamous cell carcinoma (HNSCC) with recurrent or metastatic disease, treated with pembrolizumab.Results: PD-L2 expression was observed in all tumor types and present in stromal, tumor, and endothelial cells. The prevalence and distribution of PD-L2 correlated significantly with PD-L1 (P = 0.0012-<0.0001); however, PD-L2 was detected in the absence of PD-L1 in some tumor types. Both PD-L1 and PD-L2 positivity significantly predicted clinical response to pembrolizumab on combined tumor, stromal and immune cells, with PD-L2 predictive independent of PD-L1. Response was greater in patients positive for both PD-L1 and PD-L2 (27.5%) than those positive only for PD-L1 (11.4%). PD-L2 status was also a significant predictor of progression-free survival (PFS) with pembrolizumab independent of PD-L1 status. Longer median times for PFS and overall survival were observed for PD-L2-positive than PD-L2-negative patients.Conclusions: Clinical response to pembrolizumab in patients with HNSCC may be related partly to blockade of PD-1/PD-L2 interactions. Therapy targeting both PD-1 ligands may provide clinical benefit in these patients. Clin Cancer Res; 23(12); 3158-67. ©2017 AACR.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inmunoterapia , Proteína 2 Ligando de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...