Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Anal Chem ; 96(11): 4528-4534, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38453627

RESUMEN

We report a novel detection method for single aqueous droplets in organic solvents by the collisional contact of the droplet, inducing the partial deformation of the ultramicroelectrode (UME) surface. For various chemical reactions in organic solvents, water impurities affect the catalytic activity, leading to a loss of productivity and selectivity. Therefore, it is necessary to monitor the water content of organic solvents in real time between many chemical production processes, from the laboratory to the industrial scale. Our method enables the detection of water contamination by real-time monitoring of the electrochemical signals or observing morphological changes in the microelectrode. When an aqueous droplet collides with the UME, the contact area of the electrode is electrolyzed, forming pits on the surface where the droplet falls. Current transient analysis shows a unique current spike corresponding to the reaction inside the adsorbed single aqueous droplet, which differs from those detected by the faradaic/nonfaradaic reaction of collision of other particles. Moreover, this analytical method can record the history of collision events from pits on the UME surface, implying that inspecting the UME surface could be a quick screening method for solvent contamination. Based on a comparison of the electrochemical signals and morphological changes of the electrode after each event, the sizes of the pits and droplets are related. A COMSOL simulation is performed to explain the shape of the peak current and pit formation during collision events. This experimental concept elucidates the dynamic behavior of aqueous droplets on a positively biased metal electrode.

2.
Dalton Trans ; 52(37): 13379-13386, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37675649

RESUMEN

Herein, we report our findings on 4-carbazole (CBZ)-appended salen-based indium complexes, CBZIn1 and CBZIn2, which feature diimine bridges exhibiting different electron-accepting properties. Notably, CBZIn2 exhibited a significantly higher photoluminescence quantum efficiency (PLQY, ΦPL) in toluene than CBZIn1, with a value over 15 times greater (ΦPL = 57.7% for CBZIn2; ΦPL = 3.7% for CBZIn1). In particular, in the rigid state of THF at 77 K, CBZIn2 exhibited a near-unity PLQY of 98.2%. Even in the PMMA film, CBZIn2 maintained a high level of PLQY (ΦPL = 70.2%). These results can be attributed to the highly efficient radiative decay process based on intramolecular charge-transfer (ICT) transition between the moderately twisted CBZ, characterized by its conformational rigidity and the 1,2-dicyanoethylene-bridged salen, which exhibits a strong electron-accepting ability. Furthermore, these findings are supported by theoretical calculations.

3.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36850752

RESUMEN

Herein, we report the electrochemical monitoring of attoliters of water droplets in an organic medium by the electrolysis of an extracted redox species from the continuous phase upon collisional events on an ultramicroelectrode. To obtain information about a redox-free water droplet in an organic solvent, redox species with certain concentrations need to be contained inside it. The redox species inside the droplet were delivered by a partitioning equilibrium between the organic phase and the water droplets. The mass transfer of the redox species from the surrounding organic phase to the droplet is very fast because of the radial diffusion, which resultantly establishes the equilibrium. Upon the collisional contact between the droplet and the electrode, the extracted redox species in the water droplets were selectively electrolyzed, even though the redox species in the organic continuous phase remained unreacted because of the different solvent environments. The electrolysis of the redox species in the droplets, where the concentration is determined by the equilibrium constant of the redox species in water/oil, can be used to estimate the size of single water droplets in an organic solution.

4.
Anal Chem ; 93(50): 16915-16921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34860502

RESUMEN

In this study, we report the new application of single nanodroplet electrochemistry to in situ monitor the interfacial transfer kinetics of electroactive species across liquid/liquid interface. Interfacial kinetic information is crucial in drug delivery and membrane transport. However, interfacial information has been mainly studied thermodynamically, such as partition coefficient, which could not manifest a speed of transfer. Herein, we measure the phase-transfer kinetic constant via the steady-state electrochemistry of an extracted redox species in a single nanodroplet. The redox species were transferred from the continuous oil phase to the water nanodroplet by partition equilibrium. The transferred redox species are selectively electrolyzed within the droplet when the droplet contacts with an ultramicroelectrode, while the electrochemical reaction of the redox species outside the droplet (i.e., organic solvent) is effectively suppressed by adjusting the electrolyte composition. The redox species in the water droplets can quickly attain a steady state during electrolysis owing to an extensive mass transfer by radial diffusion, and the steady-state current can be analyzed to obtain kinetic information with help from the finite-element method. Finally, a quick calculation method is suggested to estimate the kinetic constant of phase transfer without simulation.


Asunto(s)
Agua , Electroquímica , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA