Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
NPJ Precis Oncol ; 8(1): 79, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548861

RESUMEN

Glioblastoma (GBM), the most lethal primary brain cancer, exhibits intratumoral heterogeneity and molecular plasticity, posing challenges for effective treatment. Despite this, the regulatory mechanisms underlying such plasticity, particularly mesenchymal (MES) transition, remain poorly understood. In this study, we elucidate the role of the RNA-binding protein ELAVL2 in regulating aggressive MES transformation in GBM. We found that ELAVL2 is most frequently deleted in GBM compared to other cancers and associated with distinct clinical and molecular features. Transcriptomic analysis revealed that ELAVL2-mediated alterations correspond to specific GBM subtype signatures. Notably, ELAVL2 expression negatively correlated with epithelial-to-mesenchymal transition (EMT)-related genes, and its loss promoted MES process and chemo-resistance in GBM cells, whereas ELAVL2 overexpression exerted the opposite effect. Further investigation via tissue microarray analysis demonstrated that high ELAVL2 protein expression confers a favorable survival outcome in GBM patients. Mechanistically, ELAVL2 was shown to directly bind to the transcripts of EMT-inhibitory molecules, SH3GL3 and DNM3, modulating their mRNA stability, potentially through an m6A-dependent mechanism. In summary, our findings identify ELAVL2 as a critical tumor suppressor and mRNA stabilizer that regulates MES transition in GBM, underscoring its role in transcriptomic plasticity and glioma progression.

3.
Biomedicines ; 11(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38001935

RESUMEN

Patient-derived xenograft (PDX) models, which can retain the characteristics of original tumors in an in vivo-mimicking environment, have been developed to identify better treatment options. However, although original tumors and xenograft tissues mostly share oncogenic mutations and global gene expression patterns, their detailed mutation profiles occasionally do not overlap, indicating that selection occurs in the xenograft environment. To understand this mutational alteration in xenografts, we established 13 PDX models derived from 11 brain tumor patients and confirmed their histopathological similarity. Surprisingly, only a limited number of somatic mutations were shared between the original tumor and xenograft tissue. By analyzing deleteriously mutated genes in tumors and xenografts, we found that previously reported brain tumor-related genes were enriched in PDX samples, demonstrating that xenografts are a valuable platform for studying brain tumors. Furthermore, mutated genes involved in cilium movement, microtubule depolymerization, and histone methylation were enriched in PDX samples compared with the original tumors. Even with the limitations of the heterogeneity of clinical lesions with a heterotropic model, our study demonstrates that PDX models can provide more information in genetic analysis using samples with high heterogeneity, such as brain tumors.

4.
Clin Proteomics ; 20(1): 45, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875819

RESUMEN

Glioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technology followed by chemo-radiation therapy with temozolomide, resistance to the treatment and recurrence is common due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target specific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end, in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma-specific proteins, where 476 proteins were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down-regulated pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins (CCT3, PCMT1, TKT, TOMM34, UBA1) showed the significantly different protein levels (t-test: p value ≤ 0.05, AUC ≥ 0.7) between control and cancer groups and the result of multiplex assay using logistic regression showed the 5-marker panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline data for the discovery of novel biomarkers of the glioblastoma.

5.
ACS Appl Mater Interfaces ; 15(27): 32087-32098, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37234040

RESUMEN

Tumor spheroids are powerful tools for drug screening and understanding tumor physiology. Among spheroid formation methods, the hanging drop method is considered most suitable for high-throughput screening (HTS) of anticancer drugs because it does not require surface treatment. However, it still needs to increase the liquid-holding capacity because hanging drops often fall due to the increased pressure caused by the addition of drugs, cells, etc. Here, we report a multi-inlet spheroid generator (MSG) enabling the stable addition of liquid-containing drugs or cells into a spheroid through its side inlet. The MSG was able to load additional solutions through the side inlet without increasing the force applied to the hanging drop. The volume of the additional liquid was easily controlled by varying the diameter of the side inlet. Furthermore, the sequences of the solution injections were manipulated using multiple side inlets. The feasibility of the MSG in clinical application was demonstrated by testing the efficacy of drugs in patient-derived cancer (PDC) cells and controlling the stromal cell ratio in the tumor microenvironment (TME) containing spheroids. Our results suggest that the MSG is a versatile platform for HTS of anticancer drugs and recapitulating the TME.


Asunto(s)
Antineoplásicos , Esferoides Celulares , Humanos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Bahías , Ensayos Analíticos de Alto Rendimiento/métodos , Microambiente Tumoral , Antineoplásicos/farmacología
6.
Acta Biomater ; 157: 137-148, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460287

RESUMEN

Generally, brain angiogenesis is a tightly regulated process, which scarcely occurred in the absence of specific pathological conditions. Delivery of exogenous angiogenic factors enables the induction of desired angiogenesis by stimulating neovasculature formation. However, effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. Herein, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs), using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink for printing patches through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition reaction with combining methacrylated hyaluronic acid (HAMA) and vascular-tissue-derived decellularized extracellular matrix (VdECM), and thermal crosslinking of VdECM. 3D printing technology, a useful approach with fabrication versatility with customizable systems and multiple biomaterials, is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by label-free photoacoustic microscopy in vivo. The developed multi-GFs releasing patch may offer a promising therapeutic approach of spatiotemporal drugs releasing such as cerebral ischemia, ischemic heart diseases, diabetes, and even use as vaccines. STATEMENT OF SIGNIFICANCE: Effective strategies of mimicking the angiogenesis process with exogenous factors have not yet been fully explored. In this study, we develop a 3D printed spatiotemporally compartmentalized cerebral angiogenesis inducing (SCAI) hydrogel patch, releasing dual angiogenic growth factors (GFs) using extracellular matrix-based hybrid inks. We introduce a new hybrid biomaterial-based ink through dual crosslinking mechanisms: Chemical crosslinking with aza-Michael addition, and thermal crosslinking. 3D printing technology is adopted to print three-layered hydrogel patch with spatially separated dual GFs as outer- and inner-layers that provide tunable release profiles of multiple GFs and fabrication versatility. Consequently, these layers of the patch spatiotemporally separated with dual GFs induce excellent neovascularization in the brain area, monitored by photoacoustic microscopy in vivo.


Asunto(s)
Matriz Extracelular Descelularizada , Tinta , Hidrogeles/farmacología , Materiales Biocompatibles , Impresión Tridimensional , Péptidos y Proteínas de Señalización Intercelular , Ingeniería de Tejidos , Andamios del Tejido
7.
J Korean Neurosurg Soc ; 65(6): 861-867, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36344478

RESUMEN

OBJECTIVE: High-dose radiation is well known to induce and modulate the immune system. This study was performed to evaluate the correlation between clinical outcomes and changes in natural killer cell activity (NKA) after Gamma Knife Radiosurgery (GKS) in patients with brain cancer. METHODS: We performed an open-label, prospective, cross-sectional study of 38 patients who were treated with GKS for brain tumors, including metastatic and benign brain tumors. All of the patients underwent GKS, and blood samples were collected before and after GKS. NKA was measured using an enzyme-linked immunosorbent assay kit, to measure interferon-gamma (IFNγ) secreted by ex vivo-stimulated NK cells from whole blood. We explored the correlations between NK cell-produced IFNγ (NKA-IFNγ) levels and clinical parameters of patients who were treated with GKS for brain tumors. RESULTS: NKA-IFNγ levels were decreased in metastatic brain tumor patients compared to those with benign brain tumors (p<0.0001). All the patients who used steroid treatment to reduce brain swelling after GKS had an NKA-IFNγ level of zero except one patient. High NKA-IFNγ levels were not associated with a rapid decrease in brain metastasis and did not increase after GKS. CONCLUSION: The activity of NK cells in metastatic brain tumors decreased more than that in benign brain tumors after GKS.

8.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35649412

RESUMEN

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Evolución Molecular , Genes p16 , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia
9.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217600

RESUMEN

An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions-deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.


Asunto(s)
Sistemas CRISPR-Cas , Mutación INDEL , Neoplasias/genética , Animales , Muerte Celular/genética , Roturas del ADN de Doble Cadena , Xenoinjertos , Humanos , Ratones
10.
Mol Oncol ; 16(1): 250-268, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931944

RESUMEN

Targeting autophagy is a promising therapeutic approach in cancer therapy. Here, we screened 30 traditional herbal medicines to identify novel autophagy regulators and found that Platycodon grandiflorus (PG) and platycodin D (PD), a triterpenoid saponin from PG, inhibited autophagy in glioblastoma multiforme (GBM) cells. Mechanistically, PD prevented lysosomal degradation and the fusion between autophagosomes and lysosomes by inducing sequestration of free cholesterol in lysosomes. The autophagy inhibitory effect of PD was mimicked by both genetic and pharmacological inhibition of Niemann-Pick C1 (NPC1), which exports low-density lipoprotein (LDL)-derived cholesterol from lysosomes. Moreover, PD promoted the uptake of exogenous LDL cholesterol via upregulation of LDL receptor (LDLR), leading to further accumulation of cholesterol within lysosomes and GBM cell death. Importantly, these phenomena were more pronounced in LDLR-overexpressing GBM cells than in normal astrocytes. Finally, blockade of cholesterol uptake by LDLR knockdown reversed the PD-induced inhibition of autophagy and GBM cell growth. Our study proposes that PD could be a potent anti-GBM drug by disrupting cholesterol trafficking and autophagy.


Asunto(s)
Glioblastoma , Saponinas , Triterpenos , Autofagia , Muerte Celular , Colesterol/metabolismo , Glioblastoma/genética , Humanos , Lisosomas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/uso terapéutico , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Regulación hacia Arriba
11.
Exp Neurobiol ; 30(2): 120-143, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33972466

RESUMEN

Central neurocytoma (CN) has been known as a benign neuronal tumor. In rare cases, CN undergoes malignant transformation to glioblastomas (GBM). Here we examined its cellular origin by characterizing differentiation potential and gene expression of CN-spheroids. First, we demonstrate that both CN tissue and cultured primary cells recapitulate the hierarchal cellular composition of subventricular zone (SVZ), which is comprised of neural stem cells (NSCs), transit amplifying progenitors (TAPs), and neuroblasts. We then derived spheroids from CN which displayed EGFR+/ MASH+ TAP and BLBP+ radial glial cell (RGC) characteristic, and mitotic neurogenesis and gliogenesis by single spheroids were observed with cycling multipotential cells. CN-spheroids expressed increased levels of pluripotency and tumor stem cell genes such as KLF4 and TPD5L1, when compared to their differentiated cells and human NSCs. Importantly, Gene Set Enrichment Analysis showed that gene sets of GBM-Spheroids, EGFR Signaling, and Packaging of Telomere Ends are enriched in CN-spheroids in comparison with their differentiated cells. We speculate that CN tumor stem cells have TAP and RGC characteristics, and upregulation of EGFR signaling as well as downregulation of eph-ephrin signaling have critical roles in tumorigenesis of CN. And their ephemeral nature of TAPs destined to neuroblasts, might reflect benign nature of CN.

12.
Exp Mol Med ; 52(9): 1602-1613, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939014

RESUMEN

The human microbiome has been recently associated with human health and disease. Brain tumors (BTs) are a particularly difficult condition to directly link to the microbiome, as microorganisms cannot generally cross the blood-brain barrier (BBB). However, some nanosized extracellular vesicles (EVs) released from microorganisms can cross the BBB and enter the brain. Therefore, we conducted metagenomic analysis of microbial EVs in both serum (152 BT patients and 198 healthy controls (HC)) and brain tissue (5 BT patients and 5 HC) samples based on the V3-V4 regions of 16S rDNA. We then developed diagnostic models through logistic regression and machine learning algorithms using serum EV metagenomic data to assess the ability of various dietary supplements to reduce BT risk in vivo. Models incorporating the stepwise method and the linear discriminant analysis effect size (LEfSe) method yielded 12 and 29 significant genera as potential biomarkers, respectively. Models using the selected biomarkers yielded areas under the curves (AUCs) >0.93, and the model using machine learning resulted in an AUC of 0.99. In addition, Dialister and [Eubacterium] rectale were significantly lower in both blood and tissue samples of BT patients than in those of HCs. In vivo tests showed that BT risk was decreased through the addition of sorghum, brown rice oil, and garlic but conversely increased by the addition of bellflower and pear. In conclusion, serum EV metagenomics shows promise as a rich data source for highly accurate detection of BT risk, and several foods have potential for mitigating BT risk.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/microbiología , Microbiota , Anciano , Animales , Biomarcadores de Tumor , Estudios de Casos y Controles , Biología Computacional , Dieta , Femenino , Humanos , Aprendizaje Automático , Masculino , Metagenoma , Metagenómica/métodos , Ratones , Persona de Mediana Edad , Curva ROC
13.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340319

RESUMEN

An in vitro screening system for anti-cancer drugs cannot exactly reflect the efficacy of drugs in vivo, without mimicking the tumour microenvironment (TME), which comprises cancer cells interacting with blood vessels and fibroblasts. Additionally, the tumour size should be controlled to obtain reliable and quantitative drug responses. Herein, we report a bioprinting method for recapitulating the TME with a controllable spheroid size. The TME was constructed by printing a blood vessel layer consisting of fibroblasts and endothelial cells in gelatine, alginate, and fibrinogen, followed by seeding multicellular tumour spheroids (MCTSs) of glioblastoma cells (U87 MG) onto the blood vessel layer. Under MCTSs, sprouts of blood vessels were generated and surrounding MCTSs thereby increasing the spheroid size. The combined treatment involving the anti-cancer drug temozolomide (TMZ) and the angiogenic inhibitor sunitinib was more effective than TMZ alone for MCTSs surrounded by blood vessels, which indicates the feasibility of the TME for in vitro testing of drug efficacy. These results suggest that the bioprinted vascularized tumour is highly useful for understanding tumour biology, as well as for in vitro drug testing.


Asunto(s)
Bioimpresión/métodos , Técnicas de Cultivo de Célula , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neovascularización Patológica , Impresión Tridimensional , Esferoides Celulares , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles , Microscopía Confocal , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos
14.
Nat Biomed Eng ; 3(7): 509-519, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31148598

RESUMEN

Patient-specific ex vivo models of human tumours that recapitulate the pathological characteristics and complex ecology of native tumours could help determine the most appropriate cancer treatment for individual patients. Here, we show that bioprinted reconstituted glioblastoma tumours consisting of patient-derived tumour cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue in a compartmentalized cancer-stroma concentric-ring structure that sustains a radial oxygen gradient, recapitulate the structural, biochemical and biophysical properties of the native tumours. We also show that the glioblastoma-on-a-chip reproduces clinically observed patient-specific resistances to treatment with concurrent chemoradiation and temozolomide, and that the model can be used to determine drug combinations associated with superior tumour killing. The patient-specific tumour-on-a-chip model might be useful for the identification of effective treatments for glioblastoma patients resistant to the standard first-line treatment.


Asunto(s)
Bioimpresión/métodos , Quimioradioterapia/métodos , Glioblastoma/tratamiento farmacológico , Dispositivos Laboratorio en un Chip , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Combinación de Medicamentos , Evaluación de Medicamentos , Sinergismo Farmacológico , Células Endoteliales , Regulación Neoplásica de la Expresión Génica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Oxígeno , Temozolomida/farmacología , Microambiente Tumoral/efectos de los fármacos
15.
Exp Mol Med ; 51(4): 1-9, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992429

RESUMEN

Currently, the two primary patient-derived xenograft (PDX) models of glioblastoma are established through intracranial or subcutaneous injection. In this study, a novel PDX model of glioblastoma was developed via intravitreal injection to facilitate tumor formation in a brain-mimicking microenvironment with improved visibility and fast development. Glioblastoma cells were prepared from the primary and recurrent tumor tissues of a 39-year-old female patient. To demonstrate the feasibility of intracranial tumor formation, U-87 MG and patient-derived glioblastoma cells were injected into the brain parenchyma of Balb/c nude mice. Unlike the U-87 MG cells, the patient-derived glioblastoma cells failed to form intracranial tumors until 6 weeks after tumor cell injection. In contrast, the patient-derived cells effectively formed intraocular tumors, progressing from plaques at 2 weeks to masses at 4 weeks after intravitreal injection. The in vivo tumors exhibited the same immunopositivity for human mitochondria, GFAP, vimentin, and nestin as the original tumors in the patient. Furthermore, cells isolated from the in vivo tumors also demonstrated morphology similar to that of their parental cells and immunopositivity for the same markers. Overall, a novel PDX model of glioblastoma was established via the intravitreal injection of tumor cells. This model will be an essential tool to investigate and develop novel therapeutic alternatives for the treatment of glioblastoma.


Asunto(s)
Glioblastoma/patología , Inyecciones Intravítreas/métodos , Adulto , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/análisis , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Células Tumorales Cultivadas , Vimentina/análisis , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Exp Neurobiol ; 26(5): 295-306, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29093638

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain tumors. GBMs, like other tumors, rely relatively less on mitochondrial oxidative phosphorylation (OXPHOS) and utilize more aerobic glycolysis, and this metabolic shift becomes augmented under hypoxia. In the present study, we investigated the physiological significance of altered glucose metabolism and hypoxic adaptation in the GBM cell line U251 and two newly established primary GBMs (GBM28 and GBM37). We found that these three GBMs exhibited differential growth rates under hypoxia compared to those under normoxia. Under normoxia, the basal expressions of HIF1α and the glycolysis-associated genes, PDK1, PDK3, and GLUT1, were relatively low in U251 and GBM28, while their basal expressions were high in GBM37. Under hypoxia, the expressions of these genes were enhanced further in all three GBMs. Treatment with dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), induced cell death in GBM28 and GBM37 maintained under normoxia, whereas DCA effects disappeared under hypoxia, suggesting that hypoxic adaptation dominated DCA effects in these GBMs. In contrast, the inhibition of HIF1α with chrysin suppressed the expression of PDK1, PDK3, and GLUT1 and markedly promoted cell death of all GBMs under both normoxia and hypoxia. Interestingly, however, GBMs treated with chrysin under hypoxia still sustained higher viability than those under normoxia, and chrysin and DCA co-treatment was unable to eliminate this hypoxia-dependent resistance. Together, these results suggest that hypoxic adaptation is critical for maintaining viability of GBMs, and targeting hypoxic adaptation can be an important treatment option for GBMs.

17.
Exp Mol Med ; 49(4): e317, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28408749

RESUMEN

Gliosarcoma (GS) is a rare variant (2%) of glioblastoma (GBM) that poses clinical genomic challenges because of its poor prognosis and limited genomic information. To gain a comprehensive view of the genomic alterations in GS and to understand the molecular etiology of GS, we applied whole-exome sequencing analyses for 28 GS cases (6 blood-matched fresh-frozen tissues for the discovery set, 22 formalin-fixed paraffin-embedded tissues for the validation set) and copy-number variation microarrays for 5 blood-matched fresh-frozen tissues. TP53 mutations were more prevalent in the GS cases (20/28, 70%) compared to the GBM cases (29/90, 32%), and the GS patients with TP53 mutations showed a significantly shorter survival (multivariate Cox analysis, hazard ratio=23.9, 95% confidence interval, 2.87-199.63, P=0.003). A pathway analysis showed recurrent alterations in MAPK signaling (EGFR, RASGRF2 and TP53), phosphatidylinositol/calcium signaling (CACNA1s, PLCs and ITPRs) and focal adhesion/tight junction (PTEN and PAK3) pathways. Genomic profiling of the matched recurrent GS cases detected the occurrence of TP53 mutations in two recurrent GS cases, which suggests that TP53 mutations play a role in treatment resistance. Functionally, we found that TP53 mutations are associated with the epithelial-mesenchymal transition (EMT) process of sarcomatous components of GS. We provide the first comprehensive genome-wide genetic alternation profiling of GS, which suggests novel prognostic subgroups in GS patients based on their TP53 mutation status and provides new insight in the pathogenesis and targeted treatment of GS.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Transición Epitelial-Mesenquimal/genética , Gliosarcoma/genética , Mutación , Proteína p53 Supresora de Tumor/genética , Neoplasias Encefálicas/patología , Señalización del Calcio , Línea Celular Tumoral , Femenino , Gliosarcoma/patología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
18.
Mol Cancer Ther ; 16(1): 217-227, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062709

RESUMEN

Calcium (Ca2+) signaling is an important signaling process, implicated in cancer cell proliferation and motility of the deadly glioblastomas that aggressively invade neighboring brain tissue. We have previously demonstrated that caffeine blocks glioblastoma invasion and extends survival by inhibiting Ca2+ release channel inositol 1,4,5-trisphosphate receptor (IP3R) subtype 3. Trifluoperazine (TFP) is an FDA-approved antipsychotic drug for schizophrenia. Interestingly, TFP has been recently reported to show a strong anticancer effect on lung cancer, hepatocellular carcinoma, and T-cell lymphoma. However, the possible anticancer effect of TFP on glioblastoma has not been tested. Here, we report that TFP potently suppresses proliferation, motility, and invasion of glioblastoma cells in vitro, and tumor growth in in vivo xenograft mouse model. Unlike caffeine, TFP triggers massive and irreversible release of Ca2+ from intracellular stores by IP3R subtype 1 and 2 by directly interacting at the TFP-binding site of a Ca2+-binding protein, calmodulin subtype 2 (CaM2). TFP binding to CaM2 causes a dissociation of CaM2 from IP3R and subsequent opening of IP3R. Compared with the control neural stem cells, various glioblastoma cell lines showed enhanced expression of CaM2 and thus enhanced sensitivity to TFP. On the basis of these findings, we propose TFP as a potential therapeutic drug for glioblastoma by aberrantly and irreversibly increasing Ca2+ in glioblastoma cells. Mol Cancer Ther; 16(1); 217-27. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Calcio/metabolismo , Calmodulina/metabolismo , Glioblastoma/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Trifluoperazina/farmacología , Animales , Calmodulina/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Glioblastoma/patología , Humanos , Ratones , Modelos Biológicos , Metástasis de la Neoplasia , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Exp Neurobiol ; 25(1): 1-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26924928

RESUMEN

Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by a deficit in social behaviors and nonverbal interactions such as reduced eye contact, facial expression, and body gestures in the first 3 years of life. It is not a single disorder, and it is broadly considered to be a multi-factorial disorder resulting from genetic and non-genetic risk factors and their interaction. Genetic studies of ASD have identified mutations that interfere with typical neurodevelopment in utero through childhood. These complexes of genes have been involved in synaptogenesis and axon motility. Recent developments in neuroimaging studies have provided many important insights into the pathological changes that occur in the brain of patients with ASD in vivo. Especially, the role of amygdala, a major component of the limbic system and the affective loop of the cortico-striatothalamo-cortical circuit, in cognition and ASD has been proved in numerous neuropathological and neuroimaging studies. Besides the amygdala, the nucleus accumbens is also considered as the key structure which is related with the social reward response in ASD. Although educational and behavioral treatments have been the mainstay of the management of ASD, pharmacological and interventional treatments have also shown some benefit in subjects with ASD. Also, there have been reports about few patients who experienced improvement after deep brain stimulation, one of the interventional treatments. The key architecture of ASD development which could be a target for treatment is still an uncharted territory. Further work is needed to broaden the horizons on the understanding of ASD.

20.
Cancer Res ; 76(5): 1044-54, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26676754

RESUMEN

Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance.


Asunto(s)
Neoplasias/patología , Factor de Transcripción STAT3/fisiología , Microambiente Tumoral , Animales , Benzoquinonas/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Humanos , Quinasas Janus/fisiología , Lactamas Macrocíclicas/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Esferoides Celulares , Tirfostinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...