Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-24111192

RESUMEN

Passive movement, action observation and motor imagery as well as motor execution have been suggested to facilitate the motor function of human brain. The purpose of this study is to investigate the cortical activation patterns of these four modes using a functional near-infrared spectroscopy (fNIRS) system. Seven healthy volunteers underwent optical brain imaging by fNIRS. Passive movements were provided by a functional electrical stimulation (FES). Results demonstrated that while all movement modes commonly activated premotor cortex, there were considerable differences between modes. The pattern of neural activation in motor execution was best resembled by passive movement, followed by motor imagery, and lastly by action observation. This result indicates that action observation may be the least preferred way to activate the sensorimotor cortices. Thus, in order to show the feasibility of motor facilitation by a brain computer interface (BCI) for an extreme case, we paradoxically adopted the observation as a control input of the BCI. An observation-FES integrated BCI activated sensorimotor system stronger than observation but slightly weaker than FES. This limitation should be overcome to utilize the observation-FES integrated BCI as an active motor training method.


Asunto(s)
Espectroscopía Infrarroja Corta , Adulto , Brazo , Encéfalo/fisiología , Interfaces Cerebro-Computador , Estimulación Eléctrica , Electrodos , Humanos , Masculino , Actividad Motora , Corteza Motora/fisiología , Proyectos Piloto , Corteza Prefrontal/fisiología , Rango del Movimiento Articular , Corteza Sensoriomotora/fisiología
2.
Med Eng Phys ; 35(12): 1811-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24054981

RESUMEN

Brain signal variation across different subjects and sessions significantly impairs the accuracy of most brain-computer interface (BCI) systems. Herein, we present a classification algorithm that minimizes such variation, using linear programming support-vector machines (LP-SVM) and their extension to multiple kernel learning methods. The minimization is based on the decision boundaries formed in classifiers' feature spaces and their relation to BCI variation. Specifically, we estimate subject/session-invariant features in the reproducing kernel Hilbert spaces (RKHS) induced with Gaussian kernels. The idea is to construct multiple subject/session-dependent RKHS and to perform classification with LP-SVMs. To evaluate the performance of the algorithm, we applied it to oxy-hemoglobin data sets acquired from eight sessions and seven subjects as they performed two different mental tasks. Results show that our classifiers maintain good performance when applied to random patterns across varying sessions/subjects.


Asunto(s)
Interfaces Cerebro-Computador , Espectrofotometría Infrarroja/métodos , Máquina de Vectores de Soporte , Adulto , Algoritmos , Humanos
3.
Appl Opt ; 48(21): 4158-69, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19623230

RESUMEN

Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...