Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
World J Mens Health ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606866

RESUMEN

PURPOSE: The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS: The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model. RESULTS: Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels. CONCLUSIONS: These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.

2.
Biomol Ther (Seoul) ; 32(3): 329-340, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586992

RESUMEN

Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

4.
Food Res Int ; 180: 114054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395548

RESUMEN

Peptidomics analysis was conducted using high-resolution tandem mass spectrometry (MS2) to determine the peptide profile of snail-derived mucin extract (SM). The study was also aimed to identify an indicator peptide and validate a quantification method for this peptide. The peptide profiling and identification were conducted using discovery-based peptidomics analysis employing data-dependent acquisition, whereas the selected peptides were verified and quantified using parallel reaction monitoring acquisition. Among the 16 identified peptides, the selected octapeptide (TEAPLNPK) was quantified via precursor ion ionization (m/z 435.2400), followed by quantification of the corresponding quantifier ion fragment (m/z 639.3824) using MS2. The quantification method was optimized and validated in terms of specificity, linearity, accuracy, precision, and limit of detection/quantification. The validated method accurately quantified the TEAPLNPK content in the SM as 7.5 ± 0.2 µg/g. Our study not only identifies an indicator peptide from SM but also introduces a novel validation method, involving precursor ion ionization and quantification of specific fragments. Our findings may serve as a comprehensive workflow for the monitoring, selection, and quantification of indicator peptides from diverse food resources.


Asunto(s)
Mucinas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Péptidos/química
5.
J Biochem Mol Toxicol ; 38(3): e23662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372072

RESUMEN

Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, is widely used to produce polycarbonate plastics. The widely used BPA has been detected in human urine samples, raising public anxiety about the detrimental effects of BPA on the bladder. In this study, we explored regulatory mechanisms for the adverse effects of BPA in human bladder BdFC and T24 cells. BPA induced extrinsic and intrinsic apoptosis and G2/M cell cycle arrest caused by the ATM-CHK1/CHK2-CDC25c-CDC2 signaling, which ultimately inhibited the growth of human bladder cells. We also found that BPA decreased the binding activity of AP-1 and NF-κB transcription factors in human bladder cells, which inhibited migration and invasion through matrix metallopeptidase-2 and -9 inactivation. Phosphorylation of MAPKs was implicated with BPA-mediated detrimental effects in human bladder cells. Collectively, our results provide a novel explanation for the underlying molecular mechanisms that BPA induces cytotoxicity in human bladder cells.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Factores de Transcripción , Vejiga Urinaria , Humanos , Fosforilación , Apoptosis , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Ciclo Celular
7.
Food Sci Biotechnol ; 33(1): 219-229, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186617

RESUMEN

This study analyzed the virulence, growth characteristics, and cytotoxicity of Bacillus cereus strains isolated from fresh produce, including romaine lettuce, sesame leaf, tomato, and cucumber grown by different methods. Polymerase chain reaction (PCR) was used to assess the toxigenic potential, and the cytotoxicity of B. cereus was estimated using cell-free supernatant in HEp-2 cells. The study found that hblD was the predominant diarrheal enterotoxin in the 59 isolated B. cereus strains, followed by nheB and hblC. The optimal temperatures for growth ranged from 42 to 44 °C, with the highest growth rates and shortest lag times. Cytotoxicity varied greatly depending on abiotic factors, including NaCl, pH, and medium, and was not always correlated with cell population. The study highlights the importance of establishing control measures to prevent B. cereus intoxication in fresh vegetables. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01330-0.

8.
Investig Clin Urol ; 65(1): 94-103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38197756

RESUMEN

PURPOSE: T1 high grade (T1HG) bladder cancer (BC) is a type of non-muscle invasive BC (NMIBC) that is recognized as an aggressive subtype with a heightened propensity for progression. Current risk stratification methods for NMIBC rely on clinicopathological indicators; however, these approaches do not adequately capture the aggressive nature of T1HG BC. Thus, new, more accurate biomarkers for T1HG risk stratification are needed. Here, we enrolled three different patient cohorts and investigated expression of collagen type VI alpha 1 (COL6A1), a key component of the extracellular matrix, at different stages and grades of BC, with a specific focus on T1HG BC. MATERIALS AND METHODS: Samples from 298 BC patients were subjected to RNA sequencing and real-time polymerase chain reaction. RESULTS: We found that T1HG BC and muscle invasive BC (MIBC) exhibited comparable expression of COL6A1, which was significantly higher than that by other NMIBC subtypes. In particular, T1HG patients who later progressed to MIBC had considerably higher expression of COL6A1 than Ta, T1 low grade patients, and patients that did not progress, highlighting the aggressive nature and higher risk of progression associated with T1HG BC. Moreover, Cox and Kaplan-Meier survival analyses revealed a significant association between elevated expression of COL6A1 and poor progression-free survival of T1HG BC patients (multivariate Cox hazard ratio, 16.812; 95% confidence interval, 3.283-86.095; p=0.001 and p=0.0002 [log-rank test]). CONCLUSIONS: These findings suggest that COL6A1 may be a promising biomarker for risk stratification of T1HG BC, offering valuable insight into disease prognosis and guidance of personalized treatment decisions.


Asunto(s)
Neoplasias Vesicales sin Invasión Muscular , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Medición de Riesgo
9.
Phytomedicine ; 124: 155301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181531

RESUMEN

BACKGROUND: Despite the notable pharmacological potential of natural ginsenosides, their industrial application is hindered by low oral bioavailability. Recent research centers on the production of less-glycosylated minor ginsenosides. PURPOSE: This study aimed to explore the effect of a biologically synthesized ginsenoside CK-rich minor ginsenoside complex (AceCK40), on ameliorating colitis using DSS-induced colitis models in vitro and in vivo. METHODS: The ginsenoside composition of AceCK40 was determined by HPLC-ELSD and UHPLC-MS/MS analyses. In vitro colitis model was established using dextran sodium sulfate (DSS)-induced Caco-2 intestinal epithelial model. For in vivo experiments, DSS-induced severe colitis mouse model was established. RESULTS: In DSS-stimulated Caco-2 cells, AceCK40 downregulated mitogen-activated protein kinase (MAPK) activation (p < 0.05), inhibited monocyte chemoattractant protein-1 (MCP-1) production (p < 0.05), and enhanced MUC2 expression (p < 0.05), mediated via signaling pathway regulation. Daily AceCK40 administration at doses of 10 and 30 mg/kg/day was well tolerated by DSS-induced severe colitis mice. These doses led to significant alleviation of disease activity index score (> 36.0% decrease, p < 0.05), increased luminal immunoglobulin (Ig)G (> 37.6% increase, p < 0.001) and IgA (> 33.8% increase, p < 0.001), lowered interleukin (IL)-6 (> 65.7% decrease, p < 0.01) and MCP-1 (> 116.2% decrease, p < 0.05), as well as elevated serum IgA (> 51.4% increase, p < 0.001) and lowered serum IL-6 (112.3% decrease at 30 mg/kg, p < 0.001). Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining revealed that DSS-mediated thickening of the muscular externa, extensive submucosal edema, crypt distortion, and decreased mucin droplets were significantly alleviated by AceCK40 administration. Additionally, daily administration of AceCK40 led to significant recovery of colonic tight junctions damaged by DSS through the elevation in the expression of adhesion molecules, including occludin, E-cadherin, and N-cadherin. CONCLUSION: This study presents the initial evidence elucidating the anti-colitis effects of AceCK40 and its underlying mechanism of action through sequential in vitro and in vivo systems employing DSS stimulation. Our findings provide valuable fundamental data for the utilization of AceCK40 in the development of novel anti-colitis candidates.


Asunto(s)
Colitis , Ginsenósidos , Humanos , Ratones , Animales , Ginsenósidos/metabolismo , Células CACO-2 , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon , Inmunoglobulina A/metabolismo , Inmunoglobulina A/farmacología , Inmunoglobulina A/uso terapéutico , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
10.
Int J Biol Macromol ; 253(Pt 1): 126560, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37640190

RESUMEN

The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5-267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10-40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72-12.64 % at 10-40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98-12.47 % at 10-40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.


Asunto(s)
Microbioma Gastrointestinal , Loperamida , Ratas , Animales , Loperamida/efectos adversos , Mucinas , Glucanos/uso terapéutico , Ecosistema , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico
11.
Environ Toxicol Pharmacol ; 102: 104211, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423393

RESUMEN

Environmental exposure to urban particulate matter (UPM) is a serious health concern worldwide. Although several studies have linked UPM to ocular diseases, no study has reported effects of UPM exposure on senescence in retinal cells. Therefore, this study aimed to investigate the effects of UPM on senescence and regulatory signaling in human retinal pigment epithelial ARPE-19 cells. Our study demonstrated that UPM significantly promoted senescence, with increased senescence-associated ß-galactosidase activity. Moreover, both mRNA and protein levels of senescence markers (p16 and p21) and the senescence-associated secretory phenotype, including IL-1ß, matrix metalloproteinase-1, and -3 were upregulated. Notably, UPM increased mitochondrial reactive oxygen species-dependent nuclear factor-kappa B (NF-κB) activation during senescence. In contrast, use of NF-κB inhibitor Bay 11-7082 reduced the level of senescence markers. Taken together, our results provide the first in vitro preliminary evidence that UPM induces senescence by promoting mitochondrial oxidative stress-mediated NF-κB activation in ARPE-19 cells.


Asunto(s)
FN-kappa B , Material Particulado , Humanos , Material Particulado/toxicidad , FN-kappa B/metabolismo , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Senescencia Celular , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Células Epiteliales/metabolismo
12.
Front Pharmacol ; 14: 1146966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007044

RESUMEN

N-methylsansalvamide (MSSV), a cyclic pentadepsipeptide, was obtained from a strain of Fusarium solani f. radicicola. The current study investigated the anti-colorectal cancer effect of MSSV. MSSV exhibited the inhibition of the proliferation in HCT116 cells via induction of G0/G1 cell cycle arrest by downregulating CDK 2, CDK6, cyclin D, and cyclin E, and upregulating p21WAF1 and p27KIP1. Decreased phosphorylation of AKT was observed in MSSV-treated cells. Moreover, MSSV treatment induced caspase-mediated apoptosis through elevating the level of cleaved caspase 3, cleaved PARP, cleaved caspase 9, and pro-apoptotic Bax. MSSV revealed the declined MMP-9 level mediated by reduction in the binding activity of AP-1, Sp-1, and NF-κB motifs, which led to the migration and invasion of HCT116 cells. In vitro metabolism with rat liver S9 fractions was performed to examine the effect of MSSV metabolites. The metabolic process enhanced the inhibitory effect of MSSV on the HCT116 cell proliferation via decline of cyclin D1 expression and AKT phosphorylation. Finally, oral administration of MSSV inhibited the tumor growth of HCT116 xenograft mice. These results suggest that MSSV is a potential anti-tumor agent in colorectal cancer treatment.

13.
Phytomedicine ; 114: 154794, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011419

RESUMEN

BACKGROUND: Prostate cancer is the second most common cause of cancer death worldwide in men. The development of novel and highly efficient therapeutic strategies is strongly recommended to treat prostate cancer. Cyperaceae are an ecologically and economically important family of plants with several pharmacological effects. However, the biological efficacy of Cyperus exaltatus var. iwasakii (CE) is unknown. PURPOSE: This study aimed to investigate the antitumor effect of the ethanol extract of CE against prostate cancer. METHODS: In vitro antitumor efficacy of CE was explored by the MTT assay, cell counting assay, FACS analysis, immunoblot, wound-healing migration, invasion assay, zymographic assay, and EMSA in prostate cancer cells, DU145 and LNCaP. For in vivo experiments, xenograft mice were injected with LNCaP cells. Histology (H&E and Ki-67) and biochemical enzyme assay were then performed. The toxicity test was evaluated by an acute toxicity assay. The phytochemical constituents of CE were identified by spectrometric and chromatographic analyses. RESULTS: CE exerted a significant antiproliferative effect against prostate cancer cells. CE-induced antiproliferative cells were associated with cell cycle arrest at G0/G1 (cyclin D1/CDK4, cyclin E/CDK2, p21Waf1) in DU145 cells, but G2/M (ATR, CHK1, Cdc2, Cdc25c, p21Waf1, and p53) in LNCaP cells. CE stimulated the phosphorylation of ERK1/2, p38 MAPK, and AKT in DU145 cells, but only p38 MAPK phosphorylation was increased in LNCaP cells. CE treatment suppressed migration and invasion in the two types of prostate cancer cells by inhibiting MMP-9 activity through the regulation of transcription factors, such as AP-1 and NF-κB. In vivo experiments showed a reduction in tumor weight and size following oral CE administration. Histochemistry confirmed that CE inhibited tumor growth in the mouse LNCaP xenograft model. The administration of CE had no adverse effects on body weight, behavioral patterns, blood biochemistry, and histopathology findings of vital organs in mice. Finally, a total of 13 phytochemical constituents were identified and quantified in CE. The most abundant secondary metabolites in CE were astragalin, tricin, and p-coumaric acid. CONCLUSION: Our results demonstrated the antitumor efficacy of CE against prostate cancer. These findings suggest that CE might be a potential candidate for prostate cancer prevention or treatment.


Asunto(s)
Cyperus , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema de Señalización de MAP Quinasas , Etanol/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Ciclo Celular , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular , Apoptosis
14.
Artículo en Inglés | MEDLINE | ID: mdl-37079351

RESUMEN

A Gram-stain negative, aerobic, rod-shaped and creamy pink-coloured bacterium, designated MAHUQ-68T, was isolated from rhizospheric soil of a jujube tree. Colonies grew at 10-40 °C (optimum, 28 °C), pH 6.0-9.0 (optimum pH, 7.0) and in the presence of 0-1.5 % NaCl (optimum 0-0.5 %). Positive for both catalase and oxidase activity. Strain MAHUQ-68T hydrolysed casein, starch, aesculin and l-tyrosine. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-68T clustered together within the genus Solitalea. The closest members were Solitalea longa HR-AVT (98.8 % sequence similarity), Solitalea canadensis DSM 3403T (96.9 %) and Solitalea koreensis R2A36-4T (94.0 %). The genome of strain MAHUQ-68 T was 4 250 173 bp long with 68 scaffolds and 3 570 protein-coding genes. The genomic DNA G+C content of the type strain was 38.0 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain MAHUQ-68T and its closest relatives were 72.0-81.4% and 19.8-24.3 %, respectively. The major cellular fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The main respiratory quinone was menaquinone-7. The polar lipids comprised phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. Based on these data, strain MAHUQ-68T represents a novel species in the genus Solitalea, for which the name Solitalea agri sp. nov. is proposed. The type strain is MAHUQ-68T (=KACC 22249T=CGMCC 1.19062T).


Asunto(s)
Ácidos Grasos , Ziziphus , Ácidos Grasos/química , Ziziphus/genética , Suelo , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Microbiología del Suelo
15.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902068

RESUMEN

Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Phaeophyceae , Floroglucinol , Animales , Humanos , Ratones , Antioxidantes/farmacología , Apoptosis , Línea Celular , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Mioblastos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Phaeophyceae/metabolismo , Floroglucinol/farmacología , Especies Reactivas de Oxígeno/metabolismo
16.
Int J Biol Macromol ; 234: 123685, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796554

RESUMEN

Interests in the development and exploration of industrial applications of medicinal mushrooms as postbiotics have lately increased. We recently reported the potential use of Phellinus linteus mycelial-containing whole culture extract (PLME) prepared by submerged cultivation as a postbiotic that promotes immune system activation. Here, we aimed to isolate and structurally elucidate the active ingredients in PLME by activity-guided fractionation. The intestinal immunostimulatory activity was evaluated by bone marrow (BM) cell proliferation activity and related cytokine production in C3H-HeN mouse-derived Peyer's patch (PP) cells treated with polysaccharide fractions. The initially crude polysaccharide (PLME-CP) of PLME prepared using ethanol precipitation was further fractionated into four fractions (PLME-CP-0 to -III) by anion-exchange column chromatography. BM cell proliferation and cytokine production of PLME-CP-III were significantly improved compared to those of PLME-CP. PLME-CP-III was then fractionated into PLME-CP-III-1 and PLME-CP-III-2 by gel filtration chromatography. Based on the molecular weight distribution, monosaccharide, and glycosyl linkage analyses, PLME-CP-III-1 was revealed as a novel galacturonic acid-rich acidic polysaccharide and further shown to play an important role in facilitating PP-mediated intestinal immunostimulatory activity. This is the first study demonstrating the structural characteristics of a novel intestinal immune system modulating acidic polysaccharide from P. linteus mycelium-containing whole culture broth postbiotics.


Asunto(s)
Sistema Inmunológico , Polisacáridos , Animales , Ratones , Ratones Endogámicos C3H , Polisacáridos/química , Citocinas
17.
Environ Toxicol Pharmacol ; 98: 104060, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610522

RESUMEN

Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.


Asunto(s)
Músculo Liso Vascular , Proteínas Quinasas p38 Activadas por Mitógenos , Proliferación Celular , Células Cultivadas , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Miocitos del Músculo Liso/metabolismo , Movimiento Celular
19.
Ecotoxicol Environ Saf ; 249: 114358, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508820

RESUMEN

Bisphenol A (BPA) is commonly used to produce epoxy resins and polycarbonate plastics. BPA is an endocrine-disrupting chemical that is leaked from the polymer and absorbed into the body to disrupt the endocrine system. Although BPA may cause cytotoxicity in the prostate, a hormone-dependent reproductive organ, its underlying mechanism has not yet been elucidated. Here, we investigated the effects of BPA on cell proliferation, apoptosis, and the wound healing process using prostate epithelial cells (RWPE-1) and stromal cells (WPMY-1). Observations revealed that BPA induced G2/M cell cycle arrest in both cell types through the ATM-CHK1/CHK2-CDC25c-CDC2 signaling pathway, and the IC50 values were estimated to be 150 µM. Furthermore, BPA was found to induce caspase-dependent apoptosis through initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspase cascades. In addition, BPA interfered with the wound healing process through inhibition of MMP-2 and - 9 expression, accompanied by reductions in the binding activities of AP-1 as well as NF-κB motifs. Phosphorylation of MAPKs was associated with the BPA-mediated toxicity of prostate cells. These results suggest that BPA exhibits prostate toxicity by inhibiting cell proliferation, inducing apoptosis, and interfering with the wound healing process. Our study provided new insights into the precise molecular mechanisms of BPA-induced toxicity in human prostate cells.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Puntos de Control del Ciclo Celular , Metaloproteinasas de la Matriz , Quinasas de Proteína Quinasa Activadas por Mitógenos , Próstata , Cicatrización de Heridas , Humanos , Masculino , Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular , Próstata/citología , Próstata/efectos de los fármacos , Factores de Transcripción/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
20.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36552561

RESUMEN

Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...