Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Microbiol Spectr ; 10(2): e0017022, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35315698

RESUMEN

Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Osteomielitis , Infecciones Estafilocócicas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Inflamación , Interferón gamma , Ratones , Obesidad/complicaciones , Osteomielitis/complicaciones , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Poliaminas , Infecciones Estafilocócicas/complicaciones , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
2.
J Bacteriol ; 201(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30782631

RESUMEN

Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCEStaphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo , Anaerobiosis , Animales , Modelos Animales de Enfermedad , Glucólisis , Interacciones Huésped-Patógeno , Humanos , Modelos Teóricos , Staphylococcus aureus/crecimiento & desarrollo , Virulencia
3.
J Orthop Res ; 37(2): 271-287, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30667561

RESUMEN

Orthopedic device-related infection (ODRI), including both fracture-related infection (FRI) and periprosthetic joint infection (PJI), remain among the most challenging complications in orthopedic and musculoskeletal trauma surgery. ODRI has been convincingly shown to delay healing, worsen functional outcome and incur significant socio-economic costs. To address this clinical problem, ever more sophisticated technologies targeting the prevention and/or treatment of ODRI are being developed and tested in vitro and in vivo. Among the most commonly described innovations are antimicrobial-coated orthopedic devices, antimicrobial-loaded bone cements and void fillers, and dual osteo-inductive/antimicrobial biomaterials. Unfortunately, translation of these technologies to the clinic has been limited, at least partially due to the challenging and still evolving regulatory environment for antimicrobial drug-device combination products, and a lack of clarity in the burden of proof required in preclinical studies. Preclinical in vivo testing (i.e. animal studies) represents a critical phase of the multidisciplinary effort to design, produce and reliably test both safety and efficacy of any new antimicrobial device. Nonetheless, current in vivo testing protocols, procedures, models, and assessments are highly disparate, irregularly conducted and reported, and without standardization and validation. The purpose of the present opinion piece is to discuss best practices in preclinical in vivo testing of antimicrobial interventions targeting ODRI. By sharing these experience-driven views, we aim to aid others in conducting such studies both for fundamental biomedical research, but also for regulatory and clinical evaluation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:271-287, 2019.


Asunto(s)
Experimentación Animal/normas , Fijación Interna de Fracturas/efectos adversos , Fijadores Internos/efectos adversos , Infecciones Relacionadas con Prótesis , Animales , Antiinfecciosos/administración & dosificación , Modelos Animales , Infecciones Relacionadas con Prótesis/microbiología , Proyectos de Investigación
4.
J Immunol ; 201(2): 560-572, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29858265

RESUMEN

Obese patients with type 2 diabetes (T2D) are at an increased risk of foot infection, with impaired immune function believed to be a critical factor in the infectious process. In this study, we test the hypothesis that humoral immune defects contribute to exacerbated foot infection in a murine model of obesity/T2D. C57BL/6J mice were rendered obese and T2D by a high-fat diet for 3 mo and were compared with controls receiving a low-fat diet. Following injection of Staphylococcus aureus into the footpad, obese/T2D mice had greater foot swelling and reduced S. aureus clearance than controls. Obese/T2D mice also had impaired humoral immune responses as indicated by lower total IgG levels and lower anti-S. aureus Ab production. Within the draining popliteal lymph nodes of obese/T2D mice, germinal center formation was reduced, and the percentage of germinal center T and B cells was decreased by 40-50%. Activation of both T and B lymphocytes was similarly suppressed in obese/T2D mice. Impaired humoral immunity in obesity/T2D was independent of active S. aureus infection, as a similarly impaired humoral immune response was demonstrated when mice were administered an S. aureus digest. Isolated splenic B cells from obese/T2D mice activated normally but had markedly suppressed expression of Aicda, with diminished IgG and IgE responses. These results demonstrate impaired humoral immune responses in obesity/T2D, including B cell-specific defects in Ab production and class-switch recombination. Together, the defects in humoral immunity may contribute to the increased risk of foot infection in obese/T2D patients.


Asunto(s)
Linfocitos B/fisiología , Diabetes Mellitus Tipo 2/inmunología , Pie/microbiología , Centro Germinal/inmunología , Obesidad/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Citidina Desaminasa/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Pie/patología , Humanos , Inmunidad Humoral , Cambio de Clase de Inmunoglobulina , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Infecciones Estafilocócicas/microbiología
5.
JCI Insight ; 3(8)2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29669931

RESUMEN

Obesity is a risk factor for osteoarthritis (OA), the greatest cause of disability in the US. The impact of obesity on OA is driven by systemic inflammation, and increased systemic inflammation is now understood to be caused by gut microbiome dysbiosis. Oligofructose, a nondigestible prebiotic fiber, can restore a lean gut microbial community profile in the context of obesity, suggesting a potentially novel approach to treat the OA of obesity. Here, we report that - compared with the lean murine gut - obesity is associated with loss of beneficial Bifidobacteria, while key proinflammatory species gain in abundance. A downstream systemic inflammatory signature culminates with macrophage migration to the synovium and accelerated knee OA. Oligofructose supplementation restores the lean gut microbiome in obese mice, in part, by supporting key commensal microflora, particularly Bifidobacterium pseudolongum. This is associated with reduced inflammation in the colon, circulation, and knee and protection from OA. This observation of a gut microbiome-OA connection sets the stage for discovery of potentially new OA therapeutics involving strategic manipulation of specific microbial species inhabiting the intestinal space.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Inflamación/microbiología , Obesidad/microbiología , Osteoartritis/microbiología , Animales , Bifidobacterium longum/inmunología , Bifidobacterium longum/metabolismo , Disbiosis/microbiología , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , Oligosacáridos/metabolismo , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Transcriptoma/genética
6.
J Orthop Res ; 36(6): 1614-1623, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29227579

RESUMEN

Obese and type 2 diabetic (T2D) patients have a fivefold increased rate of infection following placement of an indwelling orthopaedic device. Though implant infections are associated with inflammation, periosteal reactive bone formation, and osteolysis, the effect of obesity/T2D on these complicating factors has not been studied. To address this question, C57BL/6J mice were fed a high fat diet (60% Kcal from fat) to induce obesity/T2D, or a control diet (10% Kcal from fat) for 3 months, and challenged with a transtibial pin coated with a bioluminescent USA300 strain of S. aureus. In the resulting infected bone, obesity/T2D was associated with increased S. aureus proliferation and colony forming units. RNA sequencing of the infected tibiae on days 7 and 14 revealed an increase in 635 genes in obese/T2D mice relative to controls. Pathways associated with ossification, angiogenesis, and immunity were enriched. MicroCT and histology on days 21 and 35 demonstrated significant increased periosteal reactive bone formation in infected obese/T2D mice versus infected controls (p < 0.05). The enhanced periosteal bone formation was associated with increased osteoblastic activity and robust endochondral ossification, with persistant cartilage on day 21 that was only observed in infected obesity/T2D. Osteolysis and osteoclast numbers in obesity/T2D were also significantly increased versus infected controls (p < 0.05). Consistent with an up-regulated immune transcriptome, macrophages were more abundant within both the periosteum and the new reactive bone of obese/T2D mice. In conclusion, we find that implant-associated S. aureus osteomyelitis in obesity/T2D is associated with increased inflammation, reactive bone formation, and osteolysis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1614-1623, 2018.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Inflamación/etiología , Obesidad/complicaciones , Osteogénesis , Osteólisis/etiología , Infecciones Relacionadas con Prótesis/etiología , Infecciones Estafilocócicas/etiología , Animales , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus
7.
J Intensive Care Med ; 33(1): 37-47, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27591199

RESUMEN

OBJECTIVE: Sepsis is characterized by microvascular dysfunction and thrombophilia. Several methionine metabolites may be relevant to this sepsis pathophysiology. S-adenosylmethionine (SAM) serves as the methyl donor for trans-methylation reactions. S-adenosylhomocysteine (SAH) is the by-product of these reactions and serves as the precursor to homocysteine. Relationships between plasma total homocysteine concentrations (tHcy) and vascular disease and thrombosis are firmly established. We hypothesized that SAM, SAH, and tHcy levels are elevated in patients with sepsis and associated with mortality. METHODS: This was a combined case-control and prospective cohort study consisting of 109 patients with sepsis and 50 control participants without acute illness. The study was conducted in the medical and surgical intensive care units of the University of Rochester Medical Center. Methionine, SAM, SAH, and tHcy concentrations were compared in patients with sepsis versus control participants and in sepsis survivors versus nonsurvivors. RESULTS: Patients with sepsis had significantly higher plasma SAM and SAH concentrations than control participants (SAM: 164 [107-227] vs73 [59-87 nM], P < .001; SAH: 99 [60-165] vs 35 [28-45] nM, P < .001). In contrast, plasma tHcy concentrations were lower in sepsis patients compared to healthy control participants (4 [2-6]) vs 7 [5-9] µM; P = .04). In multivariable analysis, quartiles of SAM, SAH, and tHcy were independently associated with sepsis ( P = .006, P = .05, and P < .001, respectively). Sepsis nonsurvivors had significantly higher plasma SAM and SAH concentrations than survivors (SAM: 223 [125-260] vs 136 [96-187] nM; P = .01; SAH: 139 [81-197] vs 86 [55-130] nM, P = .006). Plasma tHcy levels were similar in survivors vs nonsurvivors. The associations between SAM or SAH and hospital mortality were no longer significant after adjusting for renal dysfunction. CONCLUSIONS: Methionine metabolite concentrations are abnormal in sepsis and linked with clinical outcomes. Further study is required to determine whether these abnormalities have pathophysiologic significance.


Asunto(s)
Homocisteína/metabolismo , Mortalidad Hospitalaria , Metionina/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Sepsis/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Infecciones Relacionadas con Catéteres/metabolismo , Estudios de Cohortes , Femenino , Humanos , Infecciones Intraabdominales/metabolismo , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Infecciones del Sistema Respiratorio/metabolismo , Sepsis/mortalidad , Enfermedades Cutáneas Infecciosas/metabolismo , Infecciones Urinarias/metabolismo
8.
PLoS One ; 12(4): e0174705, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384173

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease for which there are no disease modifying therapies. Thus, strategies that offer chondroprotective or regenerative capability represent a critical unmet need. Recently, oral consumption of a hydrolyzed type 1 collagen (hCol1) preparation has been reported to reduce pain in human OA and support a positive influence on chondrocyte function. To evaluate the tissue and cellular basis for these effects, we examined the impact of orally administered hCol1 in a model of posttraumatic OA (PTOA). In addition to standard chow, male C57BL/6J mice were provided a daily oral dietary supplement of hCol1 and a meniscal-ligamentous injury was induced on the right knee. At various time points post-injury, hydroxyproline (hProline) assays were performed on blood samples to confirm hCol1 delivery, and joints were harvested for tissue and molecular analyses were performed, including histomorphometry, OARSI and synovial scoring, immunohistochemistry and mRNA expression studies. Confirming ingestion of the supplements, serum hProline levels were elevated in experimental mice administered hCol1. In the hCol1 supplemented mice, chondroprotective effects were observed in injured knee joints, with dose-dependent increases in cartilage area, chondrocyte number and proteoglycan matrix at 3 and 12 weeks post-injury. Preservation of cartilage and increased chondrocyte numbers correlated with reductions in MMP13 protein levels and apoptosis, respectively. Supplemented mice also displayed reduced synovial hyperplasia that paralleled a reduction in Tnf mRNA, suggesting an anti-inflammatory effect. These findings establish that in the context of murine knee PTOA, daily oral consumption of hCol1 is chondroprotective, anti-apoptotic in articular chondrocytes, and anti-inflammatory. While the underlying mechanism driving these effects is yet to be determined, these findings provide the first tissue and cellular level information explaining the already published evidence of symptom relief supported by hCol1 in human knee OA. These results suggest that oral consumption of hCol1 is disease modifying in the context of PTOA.


Asunto(s)
Cartílago Articular/metabolismo , Colágeno Tipo I/administración & dosificación , Suplementos Dietéticos , Modelos Animales de Enfermedad , Osteoartritis/metabolismo , Heridas y Lesiones/complicaciones , Administración Oral , Animales , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoartritis/etiología , Osteoartritis/prevención & control
9.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28320836

RESUMEN

Obesity and associated type 2 diabetes (T2D) are important risk factors for infection following orthopedic implant surgery. Staphylococcus aureus, the most common pathogen in bone infections, adapts to multiple environments to survive and evade host immune responses. Whether adaptation of S. aureus to the unique environment of the obese/T2D host accounts for its increased virulence and persistence in this population is unknown. Thus, we assessed implant-associated osteomyelitis in normal versus high-fat-diet obese/T2D mice and found that S. aureus infection was more severe, including increases in bone abscesses relative to nondiabetic controls. S. aureus isolated from bone of obese/T2D mice displayed marked upregulation of four adhesion genes (clfA, clfB, bbp, and sdrC), all with binding affinity for fibrin(ogen). Immunostaining of infected bone revealed increased fibrin deposition surrounding bacterial abscesses in obese/T2D mice. In vitro coagulation assays demonstrated a hypercoagulable state in obese/T2D mice that was comparable to that of diabetic patients. S. aureus with an inactivating mutation in clumping factor A (clfA) showed a reduction in bone infection severity that eliminated the effect of obesity/T2D, while infections in control mice were unchanged. In infected mice that overexpress plasminogen activator inhibitor-1 (PAI-1), S. aureusclfA expression and fibrin-encapsulated abscess communities in bone were also increased, further linking fibrin deposition to S. aureus expression of clfA and infection severity. Together, these results demonstrate an adaptation by S. aureus to obesity/T2D with increased expression of clfA that is associated with the hypercoagulable state of the host and increased virulence of S. aureus.


Asunto(s)
Coagulasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/complicaciones , Osteomielitis/patología , Infecciones Estafilocócicas/microbiología , Absceso/patología , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/metabolismo , Coagulasa/genética , Diabetes Mellitus Tipo 2/microbiología , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Osteomielitis/microbiología , Análisis de Secuencia de ARN , Activación Transcripcional , Regulación hacia Arriba , Virulencia
10.
Arthritis Rheumatol ; 68(6): 1392-402, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26713606

RESUMEN

OBJECTIVE: Obesity is a state of chronic inflammation that is associated with insulin resistance and type 2 diabetes mellitus (DM), as well as an increased risk of osteoarthritis (OA). This study was undertaken to define the links between obesity-associated inflammation, insulin resistance, and OA, by testing the hypotheses that 1) tumor necrosis factor (TNF) is critical in mediating these pathologic changes in OA, and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. METHODS: The effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLS) isolated from human OA synovium. Synovial TNF expression and OA progression were examined in 2 mouse models, high-fat (HF) diet-fed obese mice with type 2 DM and TNF-knockout mice. Insulin resistance was investigated in synovium from patients with type 2 DM. RESULTS: Insulin receptors (IRs) were abundant in both mouse and human synovial membranes. Human OA FLS were insulin responsive, as indicated by the dose-dependent phosphorylation of IRs and Akt. In cultures of human OA FLS with exogenous TNF, the expression and release of MMP1, MMP13, and ADAMTS4 by FLS were markedly increased, whereas after treatment with insulin, these effects were selectively inhibited by >50%. The expression of TNF and its abundance in the synovium were elevated in samples from obese mice with type 2 DM. In TNF-knockout mice, increases in osteophyte formation and synovial hyperplasia associated with the HF diet were blunted. The synovium from OA patients with type 2 DM contained markedly more macrophages and showed elevated TNF levels as compared to the synovium from OA patients without diabetes. Moreover, insulin-dependent phosphorylation of IRs and Akt was blunted in cultures of OA FLS from patients with type 2 DM. CONCLUSION: TNF appears to be involved in mediating the advanced progression of OA seen in type 2 DM. While insulin plays a protective, antiinflammatory role in the synovium, insulin resistance in patients with type 2 DM may impair this protective effect and promote the progression of OA.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Insulina/fisiología , Obesidad/complicaciones , Osteoartritis/etiología , Factor de Necrosis Tumoral alfa/fisiología , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Inflamación/complicaciones , Resistencia a la Insulina , Masculino , Ratones , Persona de Mediana Edad , Membrana Sinovial/metabolismo
11.
J Ultrasound Med ; 34(6): 1123-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26014333

RESUMEN

OBJECTIVES: The precise measurement of fat accumulation in the liver, or steatosis, is an important clinical goal. Our previous studies in phantoms and mouse livers support the hypothesis that, starting with a normal liver, increasing accumulations of microsteatosis and macrosteatosis will increase the lossy viscoelastic properties of shear waves in a medium. This increase results in an increased dispersion (or slope) of the shear wave speed in the steatotic livers. METHODS: In this study, we moved to a larger animal model, lean versus obese rat livers ex vivo, and a higher-frequency imaging system to estimate the shear wave speed from crawling waves. RESULTS: The results showed elevated dispersion in the obese rats and a separation of the lean versus obese liver parameters in a 2-dimensional parameter space of the dispersion (slope) and shear wave speed at a reference frequency of 150 Hz. CONCLUSIONS: We have confirmed in 3 separate studies the validity of our dispersion hypothesis in animal models.


Asunto(s)
Hígado Graso/diagnóstico por imagen , Hígado/diagnóstico por imagen , Animales , Fenómenos Biomecánicos , Masculino , Ratas , Ultrasonografía
12.
Environ Health Perspect ; 123(10): 935-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25861094

RESUMEN

BACKGROUND: Lead (Pb) exposure and obesity are co-occurring risk factors for decreased bone mass in the young, particularly in low socioeconomic communities. OBJECTIVES: The goal of this study was to determine whether the comorbidities of Pb exposure and high-fat diet-induced obesity amplify skeletal deficits independently associated with each of these risk factors, and to explore associated mechanisms of the observed deficiencies. METHODS: Five-week-old male C57BL/6J mice were placed on low-fat (10% kcal, LFD) or high-fat (60% kcal, HFD) diets for 12 weeks. Mice were exposed to lifetime Pb (50 ppm) through drinking water. RESULTS: HFD was associated with increased body mass and glucose intolerance. Both HFD and Pb increased fasting glucose and serum leptin levels. Pb and HFD each reduced trabecular bone quality and together had a further detrimental effect on these bone parameters. Mechanical bone properties of strength were depressed in Pb-exposed bones, but HFD had no significant effect. Both Pb and HFD altered progenitor cell differentiation, promoting osteoclastogenesis and increasing adipogenesis while suppressing osteoblastogenesis. In support of this lineage shift being mediated through altered Wnt signaling, Pb and non-esterified fatty acids in MC3T3 cells increased in vitro PPAR-γ activity and inhibited ß-catenin activity. Combining Pb and non-esterified fatty acids enhanced these effects. CONCLUSIONS: Pb and HFD produced selective deficits in bone accrual that were associated with alterations in progenitor cell activity that may involve reduced Wnt signaling. This study emphasizes the need to assess toxicants together with other risk factors relevant to human health and disease.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Vía de Señalización Wnt/efectos de los fármacos
13.
Infect Immun ; 83(6): 2264-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25802056

RESUMEN

Obesity and diabetes are among the greatest risk factors for infection following total joint arthroplasty. However, the underlying mechanism of susceptibility is unclear. We compared orthopedic implant-associated Staphylococcus aureus infections in type 1 (T1D) versus type 2 (T2D) diabetic mouse models and in patients with S. aureus infections, focusing on the adaptive immune response. Mice were fed a high-fat diet to initiate obesity and T2D. T1D was initiated with streptozotocin. Mice were then given a trans-tibial implant that was precoated with bioluminescent Xen36 S. aureus. Although both mouse models of diabetes demonstrated worse infection severity than controls, infection in T2D mice was more severe, as indicated by increases in bioluminescence, S. aureus CFU in tissue, and death within the first 7 days. Furthermore, T2D mice had an impaired humoral immune response at day 14 with reduced total IgG, decreased S. aureus-specific IgG, and increased IgM. These changes were not present in T1D mice. Similarly, T2D patients and obese nondiabetics with active S. aureus infections had a blunted IgG response to S. aureus. In conclusion, we report the first evidence of a humoral immune deficit, possibly due to an immunoglobulin class switch defect, in obesity and T2D during exacerbated S. aureus infection which may contribute to the increased infection risk following arthroplasty in patients with T2D and obesity.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inmunidad Humoral , Obesidad/inmunología , Infecciones Estafilocócicas/microbiología , Inmunidad Adaptativa , Animales , Intolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Osteomielitis/microbiología , Staphylococcus aureus
14.
Calcif Tissue Int ; 96(4): 313-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673503

RESUMEN

Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children.


Asunto(s)
Médula Ósea/patología , Resorción Ósea/fisiopatología , Dieta Alta en Grasa/efectos adversos , Osteoclastos/citología , Adipocitos/citología , Animales , Biomarcadores/sangre , Glucemia/análisis , Densidad Ósea , Médula Ósea/metabolismo , Huesos/patología , Diferenciación Celular , Separación Celular , Citometría de Flujo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Osteoblastos/citología , Osteoclastos/metabolismo , PPAR gamma/metabolismo , Ligando RANK/metabolismo , Bazo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos X
15.
PLoS One ; 9(6): e99656, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24911161

RESUMEN

INTRODUCTION: Impaired healing and non-union of skeletal fractures is a major public health problem, with morbidity exacerbated in patients with diabetes mellitus (DM). DM is prevalent worldwide and affects approximately 25.8 million US adults, with >90% having obesity-related type 2 DM (T2DM). While fracture healing in type 1 DM (T1DM) has been studied using animal models, an investigation into delayed healing in an animal model of T2DM has not yet been performed. METHODS: Male C57BL/6J mice at 5 weeks of age were placed on either a control lean diet or an experimental high-fat diet (HFD) for 12 weeks. A mid-diaphyseal open tibia fracture was induced at 17 weeks of age and a spinal needle was used for intra-medullary fixation. Mice were sacrificed at days 7, 10, 14, 21, 28, and 35 for micro-computed tomography (µCT), histology-based histomorphometry and molecular analyses, and biomechanical testing. RESULTS: HFD-fed mice displayed increased body weight and impaired glucose tolerance, both characteristic of T2DM. Compared to control mice, HFD-fed mice with tibia fractures showed significantly (p<0.001) decreased woven bone at day 28 by histomorphometry and significantly (p<0.01) decreased callus bone volume at day 21 by µCT. Interestingly, fracture calluses contained markedly increased adiposity in HFD-fed mice at days 21, 28, and 35. HFD-fed mice also showed increased PPARγ immunohistochemical staining at day 14. Finally, calluses from HFD-fed mice at day 35 showed significantly (p<0.01) reduced torsional rigidity compared to controls. DISCUSSION: Our murine model of T2DM demonstrated delayed fracture healing and weakened biomechanical properties, and was distinctly characterized by increased callus adiposity. This suggests altered mesenchymal stem cell fate determination with a shift to the adipocyte lineage at the expense of the osteoblast lineage. The up-regulation of PPARγ in fracture calluses of HFD-fed mice is likely involved in the proposed fate switching.


Asunto(s)
Adiposidad , Callo Óseo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Curación de Fractura , Obesidad/complicaciones , Animales , Fenómenos Biomecánicos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fracturas Óseas , Expresión Génica , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Obesidad/etiología , Tamaño de los Órganos , PPAR gamma/genética , PPAR gamma/metabolismo , Microtomografía por Rayos X
16.
PLoS One ; 9(3): e91234, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658034

RESUMEN

INTRODUCTION: The obesity epidemic has resulted in a large increase in type 2 diabetes (T2D). While some secondary complications of T2D are well recognized and their cellular and molecular mechanisms are defined, the impact of T2D on the musculoskeletal system is less understood. Clinical evidence suggests that tendon strength and repair are compromised. Here, a mouse model of obesity and T2D recapitulates the deleterious effects of this condition on tendon repair. METHODS: Male C57BL/6J mice at 5 weeks of age were placed on a high fat (HF)(60% kcal) or low fat (10% kcal) diet for 12 weeks. The flexor digitorum longus (FDL) tendon was then injured by puncturing it with a beveled needle. Progression of FDL tendon healing was assessed through biomechanical and histological analysis at 0, 7, 14 and 28 days post-injury. RESULTS: HF-fed mice displayed increased body weight and elevated fasting glucose levels, both consistent with T2D. No differences in biomechanical properties of the uninjured FDL tendon were observed after 12 weeks on HF versus lean diets, but decreased maximum force in uninjured tendons from HF-fed mice was observed at 24 weeks. Following puncture injury, tendons from HF-fed mice displayed impaired biomechanical properties at day 28 post injury. In support of defective repair in the HF-fed mice, histological examination of the injury site showed a smaller area of repair and lower cell content in the repair area of HF-fed mice. Insulin receptors were expressed in most cells at the injury site regardless of diet. DISCUSSION: The HF-diet mouse model of obesity and T2D reproduces the impaired tendon healing that is observed in this patient population. The exact mechanism is unknown, but we hypothesize that a cellular defect, perhaps involving insulin resistance, leads to decreased proliferation or recruitment to the injury site, and ultimately contributes to defective tendon healing.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Obesidad/complicaciones , Traumatismos de los Tendones/patología , Cicatrización de Heridas , Animales , Fenómenos Biomecánicos , Glucemia , Peso Corporal , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo
17.
Ultrasound Med Biol ; 40(4): 704-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24412179

RESUMEN

The accumulation of fat droplets within the liver is an important marker of liver disease. This study assesses gradations of steatosis in mouse livers using crawling waves, which are interfering patterns of shear waves introduced into the liver by external sources. The crawling waves are detected by Doppler ultrasound imaging techniques, and these are analyzed to estimate the shear wave speed as a function of frequency between 200 and 360 Hz. In a study of 70 mice with progressive increases in steatosis from 0% to >60%, increases in steatosis are found to increase the dispersion, or frequency dependence, of shear wave speed. This finding confirms an earlier, smaller study and points to the potential of a scoring system for steatosis based on shear wave dispersion.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Hígado Graso/diagnóstico por imagen , Hígado Graso/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Animales , Simulación por Computador , Diagnóstico Precoz , Módulo de Elasticidad , Ratones , Ratones Endogámicos C57BL , Resistencia al Corte , Estrés Mecánico , Viscosidad
18.
Bone ; 57(1): 174-83, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954757

RESUMEN

With the increasing prevalence of obesity among children and adolescents, it is imperative to understand the implications of early diet-induced obesity on bone health. We hypothesized that cancellous bone of skeletally immature mice is more susceptible to the detrimental effects of a high fat diet (HFD) than mature mice, and that removing excess dietary fat will reverse these adverse effects. Skeletally immature (5weeks old) and mature (20weeks old) male C57BL/6J mice were fed either a HFD (60% kcal fat) or low fat diet (LFD; 10% kcal fat) for 12weeks, at which point, the trabecular bone structure in the distal femoral metaphysis and third lumbar vertebrae were evaluated by micro-computed tomography. The compressive strength of the vertebrae was also measured. In general, the HFD led to deteriorations in cancellous bone structure and compressive biomechanical properties in both age groups. The HFD-fed immature mice had a greater decrease in trabecular bone volume fraction (BVF) in the femoral metaphysis, compared to mature mice (p=0.017 by 2-way ANOVA). In the vertebrae, however, the HFD led to similar reductions in BVF and compressive strength in the two age groups. When mice on the HFD were switched to a LFD (HFD:LFD) for an additional 12weeks, the femoral metaphyseal BVF in immature mice showed no improvements, whereas the mature mice recovered their femoral metaphyseal BVF to that of age-matched lean controls. The vertebral BVF and compressive strength of HFD:LFD mouse bones, following diet correction, were equivalent to those of LFD:LFD mice in both age groups. These data suggest that femoral cancellous metaphyseal bone is more susceptible to the detrimental effects of HFD before skeletal maturity and is less able to recover after correcting the diet. Negative effects of HFD on vertebrae are less severe and can renormalize with LFD:LFD mice after diet correction, in both skeletally immature and mature animals.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fémur/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Ayuno/sangre , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Microtomografía por Rayos X
19.
Arthritis Rheum ; 65(10): 2623-33, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23839930

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease resulting in severe joint cartilage destruction and disability. While the mechanisms underlying the development and progression of OA are poorly understood, gene mutations have been identified within cartilage-related signaling molecules, implicating impaired cell signaling in OA and joint disease. The Notch pathway has recently been identified as a crucial regulator of growth plate cartilage development, and components are expressed in joint tissue. This study was undertaken to investigate a novel role for Notch signaling in joint cartilage development, maintenance, and the pathogenesis of joint disease in a mouse model. METHODS: We performed the first mouse gene study in which the core Notch signaling component, RBP-Jκ, was tissue specifically deleted within joints. The Prx1Cre transgene removed Rbpjk loxP-flanked alleles in mesenchymal joint precursor cells, while the Col2Cre(ERT2) transgene specifically deleted Rbpjk in postnatal chondrocytes. Murine articular chondrocyte cultures were also used to examine Notch regulation of gene expression. RESULTS: Loss of Notch signaling in mesenchymal joint precursor cells did not affect embryonic joint development in mice, but rather, resulted in an early, progressive OA-like pathology. Additionally, partial loss of Notch signaling in murine postnatal cartilage resulted in progressive joint cartilage degeneration and an age-related OA-like pathology. Inhibition of Notch signaling altered the expression of the extracellular matrix (ECM)-related factors type II collagen (COL2A1), proteoglycan 4, COL10A1, matrix metalloproteinase 13, and ADAMTS. CONCLUSION: Our findings indicate that the RBP-Jκ-dependent Notch pathway is a novel pathway involved in joint maintenance and articular cartilage homeostasis, a critical regulator of articular cartilage ECM-related molecules, and a potentially important therapeutic target for OA-like joint disease.


Asunto(s)
Cartílago Articular/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Articulaciones/fisiología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/fisiología , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo II/genética , Colágeno Tipo II/fisiología , Homeostasis/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos , Ratones Transgénicos , Modelos Animales , Osteoartritis/fisiopatología
20.
Fetal Diagn Ther ; 33(2): 133-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23075531

RESUMEN

The acquisition of herpes simplex virus (HSV) in utero comprises a minority of neonatal herpes infections. Prenatal diagnosis is rare. We describe a midtrimester diagnosis of fetal HSV-2 infection. Ultrasound at 20 weeks for elevated maternal serum α-fetoprotein (MSAFP) showed lagging fetal growth, echogenic bowel, echogenic myocardium, and liver with a mottled pattern of echogenicity. Amniocentesis demonstrated normal karyotype, elevated AFP and positive acetylcholinesterase. Culture isolated HSV-2 with an aberrant growth pattern. Maternal serology was positive for HSV-2. Quantitative DNA polymerase chain reaction (PCR) showed 59 million copies/ml. Fetal autopsy demonstrated widespread tissue necrosis but only sparse HSV-2 inclusions. Fetal HSV-2 infection can be suspected when an elevated MSAFP accompanies ultrasound findings suggesting perinatal infection. Maternal HSV serology, amniotic fluid culture and quantitative PCR are recommended for diagnostic certainty and counseling.


Asunto(s)
Herpes Simple/embriología , Herpesvirus Humano 2/aislamiento & purificación , Diagnóstico Prenatal , Aborto Eugénico , Adulto , Líquido Amniótico/virología , Anticuerpos Antivirales/análisis , Femenino , Herpes Simple/diagnóstico , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 2/clasificación , Herpesvirus Humano 2/inmunología , Humanos , Tipificación Molecular , Educación del Paciente como Asunto , Embarazo , Segundo Trimestre del Embarazo , Adulto Joven , alfa-Fetoproteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...