Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 6(7): 830-841, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34045711

RESUMEN

The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance1. However, not all variants are equally fit in all environments2,3. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off. Here, we demonstrate this phenomenon using Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm). A dominant surface antigen of S.Tm is its O-antigen: a long, repetitive glycan that can be rapidly varied by mutations in biosynthetic pathways or by phase variation4,5. We quantified the selective advantage of O-antigen variants in the presence and absence of O-antigen-specific immunoglobulin A and identified a set of evolutionary trajectories allowing immune escape without an associated fitness cost in naive mice. Through the use of rationally designed oral vaccines, we induced immunoglobulin A responses blocking all of these trajectories. This selected for Salmonella mutants carrying deletions of the O-antigen polymerase gene wzyB. Due to their short O-antigen, these evolved mutants were more susceptible to environmental stressors (detergents or complement) and predation (bacteriophages) and were impaired in gut colonization and virulence in mice. Therefore, a rationally induced cocktail of intestinal antibodies can direct an evolutionary trade-off in S.Tm. This lays the foundations for the exploration of mucosal vaccines capable of setting evolutionary traps as a prophylactic strategy.


Asunto(s)
Inmunoglobulina A/inmunología , Intestinos/inmunología , Infecciones por Salmonella/prevención & control , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Administración Oral , Animales , Anticuerpos Antibacterianos/inmunología , Variación Antigénica , Proteínas Bacterianas/genética , Evolución Molecular , Aptitud Genética , Hexosiltransferasas/genética , Evasión Inmune , Inmunidad Mucosa , Intestinos/microbiología , Ratones , Mutación , Antígenos O/genética , Antígenos O/inmunología , Infecciones por Salmonella/microbiología , Vacunas contra la Salmonella/administración & dosificación , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Virulencia
2.
Hypertens Res ; 44(1): 23-35, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32778779

RESUMEN

Rapid blood vessel ingrowth into transplanted constructs represents the key requirement for successful tissue engineering. Seeding three-dimensional scaffolds with suitable cells is an approved technique for this challenge. Since a plethora of patients suffer from widespread diseases that limit the capacity of neoangiogenesis (e.g., hypertension), we investigated the incorporation of cell-seeded poly-L-lactide-co-glycolide scaffolds in hypertensive (BPH/2J, group A) and nonhypertensive (BPN/3J, group B) mice. Collagen-coated scaffolds (A1 and B1) were additionally seeded with osteoblast-like (A2 and B2) and mesenchymal stem cells (A3 and B3). After implantation into dorsal skinfold chambers, inflammation and newly formed microvessels were measured using repetitive intravital fluorescence microscopy for 2 weeks. Apart from a weak inflammatory response in all groups, significantly increased microvascular densities were found in cell-seeded scaffolds (day 14, A2: 192 ± 12 cm/cm2, A3: 194 ± 10 cm/cm2, B2: 249 ± 19 cm/cm2, B3: 264 ± 17 cm/cm2) when compared with controls (A1: 129 ± 10 cm/cm2, B1: 185 ± 8 cm/cm2). In this context, hypertensive mice showed reduced neoangiogenesis in comparison with nonhypertensive animals. Therefore, seeding approved scaffolds with organ-specific or pluripotent cells is a very promising technique for tissue engineering in hypertensive organisms.


Asunto(s)
Hipertensión , Animales , Células Cultivadas , Humanos , Células Madre Mesenquimatosas , Ratones , Neovascularización Patológica , Ingeniería de Tejidos , Andamios del Tejido
3.
Nat Microbiol ; 4(12): 2164-2174, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591555

RESUMEN

The microbiota confers colonization resistance, which blocks Salmonella gut colonization1. As diet affects microbiota composition, we studied whether food composition shifts enhance susceptibility to infection. Shifting mice to diets with reduced fibre or elevated fat content for 24 h boosted Salmonella Typhimurium or Escherichia coli gut colonization and plasmid transfer. Here, we studied the effect of dietary fat. Colonization resistance was restored within 48 h of return to maintenance diet. Salmonella gut colonization was also boosted by two oral doses of oleic acid or bile salts. These pathogen blooms required Salmonella's AcrAB/TolC-dependent bile resistance. Our data indicate that fat-elicited bile promoted Salmonella gut colonization. Both E. coli and Salmonella show much higher bile resistance than the microbiota. Correspondingly, competitive E. coli can be protective in the fat-challenged gut. Diet shifts and fat-elicited bile promote S. Typhimurium gut infections in mice lacking E. coli in their microbiota. This mouse model may be useful for studying pathogen-microbiota-host interactions, the protective effect of E. coli, to analyse the spread of resistance plasmids and assess the impact of food components on the infection process.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Escherichia coli/fisiología , Microbioma Gastrointestinal , Interacciones Microbianas , Salmonella typhimurium/fisiología , Alimentación Animal , Animales , Ácidos y Sales Biliares/administración & dosificación , Femenino , Interacciones Huésped-Patógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Oléicos/administración & dosificación
4.
PLoS Comput Biol ; 15(5): e1006986, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050663

RESUMEN

Immunoglobulin A is a class of antibodies produced by the adaptive immune system and secreted into the gut lumen to fight pathogenic bacteria. We recently demonstrated that the main physical effect of these antibodies is to enchain daughter bacteria, i.e. to cross-link bacteria into clusters as they divide, preventing them from interacting with epithelial cells, thus protecting the host. These links between bacteria may break over time. We study several models using analytical and numerical calculations. We obtain the resulting distribution of chain sizes, that we compare with experimental data. We study the rate of increase in the number of free bacteria as a function of the replication rate of bacteria. Our models show robustly that at higher replication rates, bacteria replicate before the link between daughter bacteria breaks, leading to growing cluster sizes. On the contrary at low growth rates two daughter bacteria have a high probability to break apart. Thus the gut could produce IgA against all the bacteria it has encountered, but the most affected bacteria would be the fast replicating ones, that are more likely to destabilize the microbiota. Linking the effect of the immune effectors (here the clustering) with a property directly relevant to the potential bacterial pathogeneicity (here the replication rate) could avoid to make complex decisions about which bacteria to produce effectors against.


Asunto(s)
Adhesión Bacteriana/inmunología , Microbioma Gastrointestinal/inmunología , Microbiota/inmunología , Animales , Bacterias/inmunología , Adhesión Bacteriana/fisiología , Fenómenos Fisiológicos Bacterianos , Fenómenos Biológicos , Simulación por Computador , Reactivos de Enlaces Cruzados , Homeostasis/fisiología , Humanos , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiología , Microbiota/fisiología
5.
Nature ; 544(7651): 498-502, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28405025

RESUMEN

Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.


Asunto(s)
Afinidad de Anticuerpos , Inmunoglobulina A/inmunología , Intestinos/inmunología , Intestinos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/inmunología , Animales , Adhesión Bacteriana , Vacunas Bacterianas , Ciego/inmunología , Ciego/microbiología , Recuento de Colonia Microbiana , Conjugación Genética , Femenino , Humanos , Masculino , Ratones , Plásmidos/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad
6.
Science ; 355(6330): 1211-1215, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302859

RESUMEN

Bacteriophage transfer (lysogenic conversion) promotes bacterial virulence evolution. There is limited understanding of the factors that determine lysogenic conversion dynamics within infected hosts. A murine Salmonella Typhimurium (STm) diarrhea model was used to study the transfer of SopEΦ, a prophage from STm SL1344, to STm ATCC14028S. Gut inflammation and enteric disease triggered >55% lysogenic conversion of ATCC14028S within 3 days. Without inflammation, SopEΦ transfer was reduced by up to 105-fold. This was because inflammation (e.g., reactive oxygen species, reactive nitrogen species, hypochlorite) triggers the bacterial SOS response, boosts expression of the phage antirepressor Tum, and thereby promotes free phage production and subsequent transfer. Mucosal vaccination prevented a dense intestinal STm population from inducing inflammation and consequently abolished SopEΦ transfer. Vaccination may be a general strategy for blocking pathogen evolution that requires disease-driven transfer of temperate bacteriophages.


Asunto(s)
Diarrea/microbiología , Diarrea/patología , Enteritis/microbiología , Lisogenia , Fagos de Salmonella/patogenicidad , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/virología , Animales , Modelos Animales de Enfermedad , Enteritis/prevención & control , Inflamación/microbiología , Inflamación/prevención & control , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Respuesta SOS en Genética , Fagos de Salmonella/genética , Vacunación , Proteínas Virales/metabolismo
7.
Nat Protoc ; 11(8): 1531-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27466712

RESUMEN

Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 µg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.


Asunto(s)
Anticuerpos Antibacterianos/análisis , Especificidad de Anticuerpos , Líquidos Corporales/química , Pruebas de Química Clínica/métodos , Citometría de Flujo/métodos , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Humanos , Relación Señal-Ruido
8.
Front Immunol ; 7: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904024

RESUMEN

Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency.

9.
Immunity ; 40(1): 117-27, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412614

RESUMEN

Interleukin 17 (IL-17)-mediated immunity plays a key role in protection from fungal infections in mice and man. Here, we confirmed that mice deficient in the IL-17 receptor or lacking the ability to secrete IL-17 are highly susceptible to systemic candidiasis, but we found that temporary blockade of the IL-17 pathway during infection in wild-type mice did not impact fungal control. Rather, mice lacking IL-17 receptor signaling had a cell-intrinsic impairment in the development of functional NK cells, which accounted for the susceptibility of these mice to systemic fungal infection. NK cells promoted antifungal immunity by secreting GM-CSF, necessary for the fungicidal activity of neutrophils. These data reveal that NK cells are crucial for antifungal defense and indicate a role for IL-17 family cytokines in NK cell development. The IL-17-NK cell axis may impact immunity against not only fungi but also bacteria, viruses, and tumors.


Asunto(s)
Candidiasis/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Asesinas Naturales/inmunología , Neutrófilos/inmunología , Receptores de Interleucina-17/metabolismo , Animales , Candidiasis/genética , Diferenciación Celular , Células Cultivadas , Citotoxicidad Inmunológica , Susceptibilidad a Enfermedades , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-17/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...