Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 190: 110039, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040123

RESUMEN

BACKGROUND: Cancer cell survival under stress conditions is a prerequisite for the development of treatment resistance. The survival kinase DYRK1B is a key regulator of stress survival pathways and might thereby also contribute to radiation resistance. Here we investigate the strategy of targeting DYRK1B in combination with ionizing radiation (IR) to enhance tumor cell killing under stress conditions. METHODS: DYRK1B expression, ROS formation and DNA damage were investigated under serum-starvation (0.1% FBS), hypoxia (0.2%, 1% O2) and IR. The combined treatment modality of IR and DYRK1B inhibition was investigated in 2D and in spheroids derived from the colorectal cancer cell line SW620, and in primary patient-derived colorectal carcinoma (CRC) organoids. RESULTS: Expression of DYRK1B was upregulated under starvation and hypoxia, but not in response to IR. The small molecule DYRK1B inhibitor AZ191 and shRNA-mediated DYRK1B knockdown significantly reduced proliferative activity and clonogenicity of SW620 tumor cells alone and in combination with IR under serum-starved conditions, which correlated with increased ROS levels and DNA damage. Furthermore, AZ191 successfully targeted the hypoxic core of tumor spheroids while IR preferentially targeted normoxic cells in the rim of the spheroids. A combined treatment effect was also observed in CRC-organoids but not in healthy tissue-derived organoids. CONCLUSION: Combined treatment with the DYRK1B inhibitor AZ191 and IR resulted in (supra-) additive tumor cell killing in colorectal tumor cell systems and in primary CRC organoids. Mechanistic investigations support the rational to target the stress-enhanced survival kinase DYRK1B in combination with irradiation to overcome hypoxia- and starvation-induced treatment resistances.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas , Humanos , Línea Celular Tumoral , Quinasas DyrK , Hipoxia , Proteínas Tirosina Quinasas/genética , Especies Reactivas de Oxígeno
2.
Nanoscale ; 14(19): 7163-7173, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35343985

RESUMEN

Signal stability is crucial for an accurate diagnosis via magnetic particle imaging (MPI). However, MPI-tracer nanoparticles frequently agglomerate during their in vivo applications leading to particle interactions altering the signal. Here, we investigate the influence of such magnetic coupling phenomena on the MPI signal. We prepared Zn0.4Fe2.6O4 nanoparticles by flame spray synthesis and controlled their inter-particle distance by varying SiO2 coating thickness. The silica shell affected the magnetic properties indicating stronger particle interactions for a smaller inter-particle distance. The SiO2-coated Zn0.4Fe2.6O4 outperformed the bare sample in magnetic particle spectroscopy (MPS) in terms of signal/noise, however, the shell thickness itself only weakly influenced the MPS signal. To investigate the importance of magnetic coupling effects in more detail, we benchmarked the MPS signal of the bare and SiO2-coated Zn-ferrites against commercially available PVP-coated Fe3O4 nanoparticles in water and PBS. PBS is known to destabilize nanoparticle colloids mimicking in vivo-like agglomeration. The bare and coated Zn-ferrites showed excellent signal stability, despite their agglomeration in PBS. We attribute this to their process-intrinsic aggregated morphology formed during their flame-synthesis, which generates an MPS signal only little affected by PBS. On the other hand, the MPS signal of commercial PVP-coated Fe3O4 strongly decreased in PBS compared to water, indicating strongly changed particle interactions. The relevance of this effect was further investigated in a human cell model. For PVP-coated Fe3O4, we detected a strong discrepancy between the particle concentration obtained from the MPS signal and the actual concentration determined via ICP-MS. The same trend was observed during their MPI analysis; while SiO2-coated Zn-ferrites could be precisely located in water and PBS, PVP-coated Fe3O4 could not be detected in PBS at all. This drastically limits the sensitivity and also general applicability of these commercial tracers for MPI and illustrates the advantages of our flame-made Zn-ferrites concerning signal stability and ultimately diagnostic accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...