Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 219: 84-95, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37573020

RESUMEN

Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase ß-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.


Asunto(s)
ADN Polimerasa beta , Reparación del ADN , Animales , Humanos , ADN/genética , ADN/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Ligasas/genética , ADN Ligasas/metabolismo , Reparación por Escisión , Mamíferos/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
2.
PLoS One ; 18(11): e0294683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38019812

RESUMEN

CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.


Asunto(s)
Sistemas CRISPR-Cas , Poli(ADP-Ribosa) Polimerasas , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN , Daño del ADN , ADN/genética , ADN/metabolismo , Roturas del ADN , ARN
3.
Cancer Med ; 12(7): 7699-7712, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36484469

RESUMEN

BACKGROUND: Response rates of immune checkpoint inhibitor (ICI) therapy for recurrent and/or metastatic head and neck squamous cell carcinoma (R/M HNSCC) are low. PATIENTS AND METHODS: This retrospective multicentre cohort study evaluates the predictive and prognostic value of weight loss and changes in body composition prior and during therapy. Patient, tumor, and treatment characteristics of 98 patients were retrieved, including neutrophil and platelet-lymphocyte-ratio (NLR and PLR). Programmed death-ligand 1 (PD-L1) expression was determined on residual material. Cachexia was defined according to Fearon et al. (2011). Skeletal muscle (SM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) were evaluated on computed tomography scans at the third lumbar vertebrae level. Univariable and multivariable regression analyses were performed for 6 months progression free survival (PFS6m) and overall survival (OS). RESULTS: Significant early weight loss (>2%) during the first 6 weeks of therapy was shown in 34 patients (35%). This patient subgroup had a significantly higher NLR and PLR at baseline. NLR and PLR were inversely correlated with SM and VAT index. Independent predictors of PFS6m were lower World Health Organization performance status (HR 0.16 [0.04-0.54] p = 0.003), higher baseline SAT index (HR 1.045 [1.02-1.08] p = 0.003), and weight loss <2% (HR 0.85 [0.74-0.98] p = 0.03). Baseline cachexia in combination with >2% early weight loss remained a predictor of OS, independent of PD-L1 expression (HR 2.09 [1.11-3.92] p = 0.02, HR 2.18 [1.13-4.21] p = 0.02). CONCLUSION: We conclude that the combination of cachexia at baseline and weight loss during ICI therapy is associated with worse OS in R/M HNSCC patients, independent of PD-L1 expression.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Humanos , Pronóstico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Caquexia/etiología , Estudios de Cohortes , Recurrencia Local de Neoplasia , Neoplasias de Cabeza y Cuello/complicaciones , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Composición Corporal
4.
DNA Repair (Amst) ; 120: 103423, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356486

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are DNA-dependent poly(ADP-ribose)transferases localized in nucleus. They have a significant homology in the C-terminal catalytic domain structure but differ in their N-terminal DNA-binding parts. The structural difference has an impact on the interaction of PARP1 and PARP2 with DNA and their DNA-dependent activation. Here, we compare the interaction of PARP1 and PARP2 with free 147 bp nucleosomal DNA and its nucleosome-associated variant (NCP) that contain in one strand a 1-nucleotide gap with 5'-dRP (imitating the intermediate of Base Excision Repair) or no specific damage. The affinity of PARP2 for the DNA strongly depends on the gap presence and to a lesser extent on the association with nucleosomes, while PARP1 interacts primarily with blunt ends of all DNAs and with a lower affinity with the single-strand break. The activities of PARP1 and PARP2 in the autoPARylation reaction and heteromodification of histones are distinctly stimulated by HPF1, depending on the gap presence in activating DNA. The most significant HPF1-induced stimulation of the histone modification in the presence of gapped NCP is a peculiar feature of PARP2. We propose a specific regulatory role of PARP2 in the process of DNA repair in the context of chromatin.


Asunto(s)
Histonas , Poli ADP Ribosilación , Histonas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ADN/metabolismo , Nucleosomas , Catálisis
5.
Commun Biol ; 4(1): 1259, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732825

RESUMEN

Poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerases (PARPs) is one of the immediate cellular responses to DNA damage. The histone PARylation factor 1 (HPF1) discovered recently to form a joint active site with PARP1 and PARP2 was shown to limit the PARylation activity of PARPs and stimulate their NAD+-hydrolase activity. Here we demonstrate that HPF1 can stimulate the DNA-dependent and DNA-independent autoPARylation of PARP1 and PARP2 as well as the heteroPARylation of histones in the complex with nucleosome. The stimulatory action is detected in a defined range of HPF1 and NAD+ concentrations at which no HPF1-dependent enhancement in the hydrolytic NAD+ consumption occurs. PARP2, comparing with PARP1, is more efficiently stimulated by HPF1 in the autoPARylation reaction and is more active in the heteroPARylation of histones than in the automodification, suggesting a specific role of PARP2 in the ADP-ribosylation-dependent modulation of chromatin structure. Possible role of the dual function of HPF1 in the maintaining PARP activity is discussed.


Asunto(s)
Proteínas Portadoras/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Proteínas Portadoras/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo
6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925170

RESUMEN

Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polß, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.


Asunto(s)
Reparación del ADN/fisiología , Poli(ADP-Ribosa) Polimerasas/fisiología , ADN/química , Daño del ADN/fisiología , ADN Polimerasa beta/genética , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Mapas de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
7.
Genes (Basel) ; 11(8)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751599

RESUMEN

In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1-DNA product complex was disrupted by DNA polymerase ß (POLß) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLß and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , ADN/metabolismo , Sitios de Unión , Proteína 9 Asociada a CRISPR/metabolismo , ADN/química , ADN/genética , Daño del ADN , ADN Glicosilasas/química , ADN Polimerasa I/metabolismo , ADN Polimerasa beta/química , Reparación del ADN , Humanos , Unión Proteica
8.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354179

RESUMEN

Human apurinic/apyrimidinic endonuclease 1 (APE1) has multiple functions in base excision DNA repair (BER) and other cellular processes. Its eukaryote-specific N-terminal extension plays diverse regulatory roles in interaction with different partners. Here, we explored its involvement in interaction with canonical BER proteins. Using fluorescence based-techniques, we compared binding affinities of the full-length and N-terminally truncated forms of APE1 (APE1NΔ35 and APE1NΔ61) for functionally and structurally different DNA polymerase ß (Polß), X-ray repair cross-complementing protein 1 (XRCC1), and poly(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP1), in the absence and presence of model DNA intermediates. Influence of the N-terminal truncation on binding the AP site-containing DNA was additionally explored. These data suggest that the interaction domain for proteins is basically formed by the conserved catalytic core of APE1. The N-terminal extension being capable of dynamically interacting with the protein and DNA partners is mostly responsible for DNA-dependent modulation of protein-protein interactions. Polß, XRCC1, and PARP1 were shown to more efficiently regulate the endonuclease activity of the full-length protein than that of APE1NΔ61, further suggesting contribution of the N-terminal extension to BER coordination. Our results advance the understanding of functional roles of eukaryote-specific protein extensions in highly coordinated BER processes.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/metabolismo , Mutación , Sitios de Unión , ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Fluorescencia , Regulación de la Expresión Génica , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
9.
Biochimie ; 168: 144-155, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31668992

RESUMEN

Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential multifunctional protein in mammals involved in base excision DNA repair (BER), regulation of gene expression and RNA metabolism. Its major enzymatic function is incision of AP sites. Poly(ADP-ribose) polymerase 1 (PARP1) modifies itself and target proteins with poly(ADP-ribose) (PAR), contributing to regulation of many processes. To understand molecular basis of functional cooperation between APE1 and PARP1 in BER, we examined PAR-binding activity and ADP-ribosylation of human APE1 in comparison with known targets of PARP1, using the full-length, N-terminally truncated and catalytically inactive forms of APE1. The protein binds preferentially large ADP-ribose polymers, being very similar to DNA polymerase ß (Polß) but contrasting with the scaffold XRCC1 protein. The interaction with PAR involves the universally conserved catalytic portion and the eukaryote-specific extension of APE1. The ADP-ribosylation of APE1 depends on the structure of PARP1-activating DNA, contrasting APE1 with Polß and XRCC1. Relative levels of APE1 modification in the presence of different DNA substrates were found to correlate with affinities of the DNAs for APE1 and substrate activities in the enzymatic incision, suggesting the ADP-ribosylation to occur within the DNA-mediated ternary complex. This conclusion was confirmed by importance of the length of DNA region 3' to the AP site for the modification. Deletion of the N-terminal extension of APE1 produced no significant influence on both the ADP-ribosylation efficiency and hydrolytic stability of the modified protein, suggesting localization of target amino acids in the conserved catalytic portion. The most efficient ADP-ribosylation of the catalytically inactive APE1 mutant was shown to reduce the level of PARP1 automodification, suggesting possible role of APE1 in modulating PARP1 activity. Our data on primary role of DNA in controlling the PARP-catalysed modification provide new insights into mechanisms of protein targeting for ADP-ribosylation.


Asunto(s)
ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Clonación Molecular , Daño del ADN , Reparación del ADN , Escherichia coli/genética , Unión Proteica
10.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 297-305, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30321662

RESUMEN

Base excision repair (BER) involves many enzymes acting in a coordinated fashion at the most common types of DNA damage. The coordination is facilitated by interactions between the enzymes and accessory proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly(ADP-ribose) polymerase 1 (PARP1). Here we use dynamic light scattering (DLS) technique to determine the hydrodynamic sizes of several BER enzymes and proteins, DNA polymerase ß (Polß), apurinic/apyrimidinic endonuclease 1 (APE1), tyrosyl-DNA phosphodiesterase 1 (TDP1), XRCC1 and PARP1, present alone or in the equimolar mixtures with each other. From the DLS data combined with glutaraldehyde cross-linking experiments and previous quantitative binding data the oligomeric states of BER proteins and their complexes are estimated. All the proteins have been proposed to form homodimers upon their self-association. The most probable oligomerization state of the binary complexes formed by PARP1 with various proteins is a heterotetramer. The oligomerization state of the binary complexes formed by XRCC1 varies from heterodimer to heterotetramer, depending on the partner. The DLS technique is applied for the first time to measure the hydrodynamic sizes of PARP1 molecules covalently bound with poly(ADP-ribose) (PAR) synthesized upon the automodification reaction. PARP1 has been detected to form huge conglomerates stabilized by Mg2+ coordinated bonds with PAR polymers.


Asunto(s)
ADN Polimerasa beta/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Hidrolasas Diéster Fosfóricas/química , Poli(ADP-Ribosa) Polimerasa-1/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Dispersión Dinámica de Luz
11.
Protein Sci ; 26(8): 1505-1516, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28419689

RESUMEN

Mutations in the mitochondrial aminoacyl-tRNA synthetases (mtaaRSs) can cause profound clinical presentations, and have manifested as diseases with very selective tissue specificity. To date most of the mtaaRS mutations could be phenotypically recognized, such that clinicians could identify the affected mtaaRS from the symptoms alone. Among the recently reported pathogenic variants are point mutations in FARS2 gene, encoding the human mitochondrial PheRS. Patient symptoms range from spastic paraplegia to fatal infantile Alpers encephalopathy. How clinical manifestations of these mutations relate to the changes in three-dimensional structures and kinetic characteristics remains unclear, although impaired aminoacylation has been proposed as possible etiology of diseases. Here, we report four crystal structures of HsmtPheRS mutants, and extensive MD simulations for wild-type and nine mutants to reveal the structural changes on dynamic trajectories of HsmtPheRS. Using steady-state kinetic measurements of phenylalanine activation and tRNAPhe aminoacylation, we gained insight into the structural and kinetic effects of mitochondrial disease-related mutations in FARS2 gene.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder/genética , Proteínas Mitocondriales/química , Mutación , Paraplejía/genética , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia de Fenilalanina/química , Adolescente , Secuencias de Aminoácidos , Aminoacilación , Sitios de Unión , Preescolar , Cristalografía por Rayos X , Esclerosis Cerebral Difusa de Schilder/diagnóstico , Esclerosis Cerebral Difusa de Schilder/metabolismo , Esclerosis Cerebral Difusa de Schilder/patología , Femenino , Humanos , Cinética , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Paraplejía/diagnóstico , Paraplejía/metabolismo , Paraplejía/patología , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia de Fenilalanina/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Termodinámica
12.
Biochim Biophys Acta ; 1864(12): 1631-1640, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27544639

RESUMEN

Base excision repair (BER) is a flagship DNA repair system responsible for maintaining genome integrity. Apart from basal enzymes, this system involves several accessory factors essential for coordination and regulation of DNA processing during substrate channeling. Y-box-binding protein 1 (YB-1), a multifunctional factor that can interact with DNA, RNA, poly(ADP-ribose) and plenty of proteins including DNA repair enzymes, is increasingly considered as a non-canonical protein of BER. Here we provide quantitative characterization of YB-1 physical interactions with key BER factors such as PARP1, PARP2, APE1, NEIL1 and pol ß and comparison of the full-length YB-1 and its C-terminally truncated nuclear form in regard to their binding affinities for BER proteins. Data on functional interactions reveal strong stimulation of PARP1 autopoly(ADP-ribosyl)ation and inhibition of poly(ADP-ribose) degradation by PARG in the presence of YB-1. Moreover, YB-1 is shown to stimulate AP lyase activity of NEIL1 and to inhibit dRP lyase activity of pol ß on model DNA duplex structure. We also demonstrate for the first time YB-1 poly(ADP-ribosyl)ation in the presence of RNA.


Asunto(s)
Reparación del ADN/fisiología , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Proteína 1 de Unión a la Caja Y/química , Proteína 1 de Unión a la Caja Y/genética
13.
Protein Sci ; 25(3): 618-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26645192

RESUMEN

Mitochondria are considered as the primary source of reactive oxygen species (ROS) in nearly all eukaryotic cells during respiration. The harmful effects of these compounds range from direct neurotoxicity to incorporation into proteins producing aberrant molecules with multiple physiological problems. Phenylalanine exposure to ROS produces multiple oxidized isomers: tyrosine, Levodopa, ortho-Tyr, meta-Tyr (m-Tyr), and so on. Cytosolic phenylalanyl-tRNA synthetase (PheRS) exerts control over the translation accuracy, hydrolyzing misacylated products, while monomeric mitochondrial PheRS lacks the editing activity. Recently we showed that "teamwork" of cytosolic and mitochondrial PheRSs cannot prevent incorporation of m-Tyr and l-Dopa into proteins. Here, we present human mitochondrial chimeric PheRS with implanted editing module taken from EcPheRS. The monomeric mitochondrial chimera possesses editing activity, while in bacterial and cytosolic PheRSs this type of activity was detected for the (αß)2 architecture only. The fusion protein catalyzes aminoacylation of tRNA(Phe) with cognate phenylalanine and effectively hydrolyzes the noncognate aminoacyl-tRNAs: Tyr-tRNA(Phe) and m-Tyr-tRNA(Phe) .


Asunto(s)
Aminoácidos/metabolismo , Mitocondrias/enzimología , Fenilalanina-ARNt Ligasa/metabolismo , Acilación , Clonación Molecular , Humanos , Hidrólisis , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Aminoacil-ARN de Transferencia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
Biochimie ; 119: 36-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453809

RESUMEN

Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Procesamiento Proteico-Postraduccional , Regulación hacia Arriba , Proteína 1 de Unión a la Caja Y/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Ensayo de Cambio de Movilidad Electroforética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutación , NAD/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión a la Caja Y/química , Proteína 1 de Unión a la Caja Y/genética
15.
Nucleic Acids Res ; 43(12): 6009-22, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26013813

RESUMEN

Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase ß (Polß), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polß, APE1-TDP1, APE1-PARP1 and Polß-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polß. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polß complexes with XRCC1 and PARP1, while having no detectable influence on the protein-protein binding affinities. The strength of APE1 interaction with Polß, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polß is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , ADN/metabolismo , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Humanos , Luz , Hidrolasas Diéster Fosfóricas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Dispersión de Radiación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
Proc Natl Acad Sci U S A ; 112(13): 3967-72, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775602

RESUMEN

At the amino acid binding and recognition step, phenylalanyl-tRNA synthetase (PheRS) faces the challenge of discrimination between cognate phenylalanine and closely similar noncognate tyrosine. Resampling of Tyr-tRNA(Phe) to PheRS increasing the number of correctly charged tRNA molecules has recently been revealed. Thus, the very same editing site of PheRS promotes hydrolysis of misacylated tRNA species, associated both with cis- and trans-editing pathways. Here we report the crystal structure of Thermus thermophilus PheRS (TtPheRS) at 2.6 Å resolution, in complex with phenylalanine and antibiotic puromycin mimicking the A76 of tRNA acylated with tyrosine. Starting from the complex structure and using a hybrid quantum mechanics/molecular mechanics approach, we investigate the pathways of editing reaction catalyzed by TtPheRS. We show that both 2' and 3' isomeric esters undergo mutual transformation via the cyclic intermediate orthoester, and the editing site can readily accommodate a model of Tyr-tRNA(Phe) where deacylation occurs from either the 2'- or 3'-OH. The suggested pathway of the hydrolytic reaction at the editing site of PheRS is of sufficient generality to warrant comparison with other class I and class II aminoacyl-tRNA synthetases.


Asunto(s)
Fenilalanina-ARNt Ligasa/química , Puromicina/química , Thermus thermophilus/enzimología , Aminoácidos/química , Antibacterianos/química , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Escherichia coli/enzimología , Enlace de Hidrógeno , Hidrólisis , Ligandos , Modelos Moleculares , Conformación Molecular , Fenilalanina/química , Multimerización de Proteína , Inhibidores de la Síntesis de la Proteína/química , Teoría Cuántica , Tirosina/química
17.
PLoS One ; 8(8): e68576, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936307

RESUMEN

Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1-2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3'-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/química , ADN/genética , Uracilo/análogos & derivados , Secuencia de Bases , Biocatálisis , ADN/metabolismo , División del ADN , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Uracilo/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
18.
J Mol Biol ; 415(3): 527-37, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22137894

RESUMEN

Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe the first crystal structure of mitochondrial aminoacyl-tRNA synthetase (aaRS) complexed with tRNA at a resolution of 3.0 Å. Unlike bacterial PheRSs, the hmPheRS recognizes C74, the G1-C72 base pair, and the "discriminator" base A73, proposed to contribute to tRNA(Phe) identity in the yeast mitochondrial enzyme. An interaction of the tRNA acceptor stem with the signature motif 2 residues of hmPheRS is of critical importance for the stabilization of the CCA-extended conformation and its correct placement in the synthetic site of the enzyme. The crystal structure of hmPheRS-tRNA(Phe) provides direct evidence that the formation of the complex with tRNA requires a significant rearrangement of the anticodon-binding domain from the "closed" to the productive "open" state. Global repositioning of the domain is tRNA modulated and governed by long-range electrostatic interactions.


Asunto(s)
Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Electricidad Estática
19.
Chem Biol ; 18(10): 1221-9, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22035791

RESUMEN

Aminoacyl-tRNA synthetases exert control over the accuracy of translation by selective pairing the correct amino acids with their cognate tRNAs, and proofreading the misacylated products. Here we show that three existing, structurally different phenylalanyl-tRNA synthetases-human mitochondrial (HsmtPheRS), human cytoplasmic (HsctPheRS), and eubacterial from Thermus thermophilus (TtPheRS), catalyze mischarging of tRNA(Phe) with an oxidized analog of tyrosine-L-dopa. The lowest level of L-dopa discrimination over the cognate amino acid, exhibited by HsmtPheRS, is comparable to that of tyrosyl-tRNA synthetase. HsmtPheRS and TtPheRS complexes with L-dopa revealed in the active sites an electron density shaping this ligand. HsctPheRS and TtPheRS possessing editing activity are capable of hydrolyzing the exogenous L-dopa-tRNA(Phe) as efficiently as Tyr-tRNA(Phe). However, editing activity of PheRS does not guarantee reduction of the aminoacylation error rate to escape misincorporation of L-dopa into polypeptide chains.


Asunto(s)
Eucariontes/enzimología , Levodopa/metabolismo , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Thermus thermophilus/enzimología , Dominio Catalítico , Citoplasma/enzimología , Humanos , Mitocondrias/enzimología , Conformación Proteica , Edición de ARN , Tirosina/análogos & derivados
20.
Structure ; 18(3): 343-53, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20223217

RESUMEN

The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the anticodon-binding domain B8 in human cytosolic PheRS (hcPheRS) is indicative of variations in the tRNA(Phe) binding and recognition as compared to bacterial PheRSs. We report herein the crystal structure of hcPheRS in complex with phenylalanine at 3.3 A resolution. A novel structural module has been revealed at the N terminus of the alpha subunit. It stretches out into the solvent of approximately 80 A and is made up of three structural domains (DBDs) possessing DNA-binding fold. The dramatic reduction of aminoacylation activity for truncated N terminus variants coupled with structural data and tRNA-docking model testify that DBDs play crucial role in hcPheRS activity.


Asunto(s)
Citosol/enzimología , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Dominio Catalítico , Humanos , Hidrólisis , Modelos Moleculares , Fenilalanina-ARNt Ligasa/metabolismo , Conformación Proteica , ARN de Transferencia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...