Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Cardiovasc Electrophysiol ; 34(9): 1859-1868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37526234

RESUMEN

INTRODUCTION: Sinus node location, function, and atrial activation are often abnormal in patients with congenital heart disease (CHD), due to anatomical, surgical, and acquired factors. We aimed to perform noninvasive electrocardiographic imaging (ECGI) of the intrinsic atrial pacemaker and atrial activation in patients with surgically repaired or palliated CHD, compared with control patients with structurally normal hearts. METHODS AND RESULTS: Atrial ECGI was performed in eight CHD patients with prespecified diagnoses (Fontan circulation, dextro transposition of the great arteries post Mustard/Senning, tetralogy of Fallot), and three controls. Activation and propagation maps were constructed in presenting rhythm. Wavefront propagation was analyzed to identify (1) intrinsic atrial pacemaker breakout site, (2) morphological right atrial (RA) activation pattern, (3) morphological left atrial (LA) breakout sites (i.e., interatrial connections), (4) LA activation pattern, and (5) putative lines of block. Physiologically appropriate atrial activation and propagation maps were able to be constructed. In the majority of patients, atrial breakouts were in keeping with the sinus node, observed in a crescent-shaped distribution from the anterior superior vena cava to the posterior RA. Ectopic atrial pacemaker sites were demonstrated in the atriopulmonary (AP) Fontan patient (very diffuse posterolateral RA) and Mustard patient (very posterior RA competing with a low RA focus). RA propagation was laminar in controls, but suggested either a line of block or conduction slowing consistent with an atriotomy scar in the tetralogy of Fallot (TOF) patients. Putative lines of block were more complex and RA propagation more abnormal in the atrial switch and AP Fontan patients, compared with the TOF patients. RA activation in the extracardiac Fontan patients was relatively laminar. Earliest LA breakout was most commonly observed in the region of Bachmann's Bundle in both controls and CHD patients, except for posterior LA breakouts in two patients. LA activation was typically more homogeneous than RA activation in CHD patients. CONCLUSION: ECGI can be utilized to create a noninvasive mapping model of atrial activation in postsurgical CHD, demonstrating atrial pacemaker location, putative lines of block and interatrial connections. Once validated invasively, this may have clinical implications in predicting risk of sinus node dysfunction and atrial arrhythmias, or in guiding catheter ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Cardiopatías Congénitas , Tetralogía de Fallot , Transposición de los Grandes Vasos , Humanos , Fibrilación Atrial/cirugía , Tetralogía de Fallot/cirugía , Vena Cava Superior , Transposición de los Grandes Vasos/cirugía , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/cirugía , Electrocardiografía , Ablación por Catéter/efectos adversos
2.
Hum Gene Ther ; 34(19-20): 1049-1063, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578141

RESUMEN

Autosomal dominant Alzheimer's disease (ADAD) is a rare early-onset form of Alzheimer's disease, caused by dominant mutations in one of three genes: presenilin 1, presenilin 2, and amyloid ß precursor protein (APP). Mutations in the presenilin 1 gene (PSEN1) account for the majority of cases, and individuals who inherit a single-mutant PSEN1 allele go on to develop early-onset dementia, ultimately leading to death. The presenilin 1 protein (PS1) is the catalytic subunit of the γ-secretase protease, a tetrameric protease responsible for cleavage of numerous transmembrane proteins, including Notch and the APP. Inclusion of a mutant PS1 subunit in the γ-secretase complex leads to a loss of enzyme function and a preferential reduction of shorter forms of Aß peptides over longer forms, an established biomarker of ADAD progression in human patients. In this study, we describe the development of a gene therapy vector expressing a wild-type (WT) copy of human PSEN1 to ameliorate the loss of function associated with PSEN1 mutations. We have carried out studies in mouse models using a recombinant AAV9 vector to deliver the PSEN1 gene directly into the central nervous system (CNS) and shown that we can normalize γ-secretase function and slow neurodegeneration in both PSEN1 conditional knockout and PSEN1 mutant knockin models. We have also carried out biodistribution studies in nonhuman primates (NHPs) and demonstrated the ability to achieve broad PS1 protein expression throughout the cortex and the hippocampus, two regions known to be critically involved in ADAD progression. These studies demonstrate preclinical proof of concept that expression of a WT human PSEN1 gene in cells harboring a dominant PSEN1 mutation can correct the γ-secretase dysfunction. In addition, direct administration of the recombinant AAV9 into the NHP brain can achieve broad expression at levels predicted to provide efficacy in the clinic.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Distribución Tisular , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mutación , Terapia Genética
3.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348055

RESUMEN

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Penetrancia , Exones , Genotipo , ARN Mensajero/genética , Empalme Alternativo
4.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110623

RESUMEN

Large molecule protein therapeutics have steadily grown and now represent a significant portion of the overall pharmaceutical market. These complex therapies are commonly manufactured using cell culture technology. Sequence variants (SVs) are undesired minor variants that may arise from the cell culture biomanufacturing process that can potentially affect the safety and efficacy of a protein therapeutic. SVs have unintended amino acid substitutions and can come from genetic mutations or translation errors. These SVs can either be detected using genetic screening methods or by mass spectrometry (MS). Recent advances in Next-generation Sequencing (NGS) technology have made genetic testing cheaper, faster, and more convenient compared to time-consuming low-resolution tandem MS and Mascot Error Tolerant Search (ETS)-based workflows which often require ~6 to 8 weeks data turnaround time. However, NGS still cannot detect non-genetic derived SVs while MS analysis can do both. Here, we report a highly efficient Sequence Variant Analysis (SVA) workflow using high-resolution MS and tandem mass spectrometry combined with improved software to greatly reduce the time and resource cost associated with MS SVA workflows. Method development was performed to optimize the high-resolution tandem MS and software score cutoff for both SV identification and quantitation. We discovered that a feature of the Fusion Lumos caused significant relative under-quantitation of low-level peptides and turned it off. A comparison of common Orbitrap platforms showed that similar quantitation values were obtained on a spiked-in sample. With this new workflow, the amount of false positive SVs was decreased by up to 93%, and SVA turnaround time by LC-MS/MS was shortened to 2 weeks, comparable to NGS analysis speed and making LC-MS/MS the top choice for SVA workflow.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Cromatografía Liquida/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
5.
J Am Soc Mass Spectrom ; 34(3): 484-492, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802331

RESUMEN

New peak detection (NPD), as part of the LC-MS-based multi-attribute method (MAM), allows for sensitive and unbiased detection of new or changing site-specific attributes between a sample and reference that is not possible with conventional UV or fluorescence detection-based methods. MAM with NPD can serve as a purity test that can establish whether a sample and the reference are similar. The broad implementation of NPD in the biopharmaceutical industry has been limited by the potential presence of false positives or artifacts, which increase the analysis time and can trigger unnecessary investigations of product quality. Our novel contributions to the success of NPD are the curation of false positives, use of the known peak list concept, pairwise analysis approach, and the development of a NPD system suitability control strategy. In this report, we also introduce a unique experimental design utilizing sequence variant co-mixes to measure NPD performance. We show that NPD has superior performance relative to conventional control system methods in the detection of an unexpected change as compared with the reference. NPD is a new frontier in purity testing that reduces subjectivity, need for analyst intervention, and potential for missing unexpected product quality changes.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos
6.
J Arrhythm ; 39(1): 27-33, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36733330

RESUMEN

Background: To mitigate the risk of dyssynchrony-induced cardiomyopathy, international guidelines advocate His bundle pacing (HBP) with a ventricular backup lead prior to atrioventricular node ablation in treatment-refractory atrial fibrillation and normal left ventricular ejection fraction. As a result of concerns with long-term pacing parameters associated with HBP, this case series reports an adopted strategy of HBP combined with deep septal left bundle branch area pacing (dsLBBAP) in this patient cohort, enabling intrapatient comparison of the two pacing methods. Methods and Results: Eight patients aged 72 ± 10 years (left ventricular ejection fraction 53 ± 4%) underwent successful combined HBP and dsLBBAP implant prior to AV node ablation. Intrinsic QRS duration was 118 ± 46 ms. When compared to dsLBBAP, HBP had lower sensed ventricular amplitude (2.4 ± 1.1 vs. 15 ± 5.3 V, p = .001) and lower lead impedance (522 ± 57 vs. 814 ± 171ohms, p = .02), but shorter paced QRS duration (101 ± 20 vs. 119 ± 17 ms, p = .02). HBP pacing threshold was 1.0 ± 0.6 V at 1 ms pulse width, and dsLBBAP pacing threshold was 0.5 ± 0.2 V at 0.4 ms pulse width. Five patients underwent cardiac CT showing adequate dsLBBAP ventricular septal penetration (8.6 ± 1.3 mm depth, 2.4 ± 0.5 mm distance from left ventricular septal wall). No complications occurred during a mean follow-up duration of 121 ± 92 days. Conclusions: Combined HBP and dsLBBAP pacing is a feasible approach as a pace and ablate strategy for atrial fibrillation refractory to medical therapy.

7.
Europace ; 25(2): 417-424, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36305561

RESUMEN

AIMS: Radiofrequency (RF) ablation for pulmonary vein isolation (PVI) in atrial fibrillation (AF) is associated with the risk of oesophageal thermal injury (ETI). Higher power short duration (HPSD) ablation results in preferential local resistive heating over distal conductive heating. Although HPSD has become increasingly common, no randomized study has compared ETI risk with conventional lower power longer duration (LPLD) ablation. This study aims to compare HPSD vs. LPLD ablation on ETI risk. METHODS AND RESULTS: Eighty-eight patients were randomized 1:1 to HPSD or LPLD posterior wall (PW) ablation. Posterior wall ablation was 40 W (HPSD group) or 25 W (LPLD group), with target AI (ablation index) 400/LSI (lesion size index) 4. Anterior wall ablation was 40-50 W, with a target AI 500-550/LSI 5-5.5. Endoscopy was performed on Day 1. The primary endpoint was ETI incidence. The mean age was 61 ± 9 years (31% females). The incidence of ETI (superficial ulcers n = 4) was 4.5%, with equal occurrence in HPSD and LPLD (P = 1.0). There was no difference in the median value of maximal oesophageal temperature (HPSD 38.6°C vs. LPLD 38.7°C, P = 0.43), or the median number of lesions per patient with temperature rise above 39°C (HPSD 1.5 vs. LPLD 2, P = 0.93). Radiofrequency ablation time (23.8 vs. 29.7 min, P < 0.01), PVI duration (46.5 vs. 59 min, P = 0.01), and procedure duration (133 vs. 150 min, P = 0.05) were reduced in HPSD. After a median follow-up of 12 months, AF recurrence was lower in HPSD (15.9% vs. LPLD 34.1%; hazard ratio 0.42, log-rank P = 0.04). CONCLUSION: Higher power short duration ablation was associated with similarly low rates of ETI and shorter total/PVI RF ablation times when compared with LPLD ablation. Higher power short duration ablation is a safe and efficacious approach to PVI.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Ablación por Radiofrecuencia , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Calor , Estudios Prospectivos , Venas Pulmonares/cirugía , Ablación por Catéter/efectos adversos , Resultado del Tratamiento , Recurrencia
8.
Cities Health ; 7(6): 964-972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234465

RESUMEN

"What does livability mean to us? Creating communities that care." This reflective praxis think-piece was a collective effort by graduates of the Livability Academy program, a community leadership program hosted in eastern North Philadelphia. Program participants worked in teams to implement programs to improve neighborhood quality of life, as those involved in implementing Livability Academy collaborated to strengthen the bottom-up, asset-based, network-driven model. Our reflections on successes and areas for improvement can strengthen future cohorts of Livability Academy and keep us connected to continue making our neighborhoods more livable.

10.
Eur Heart J ; 43(22): 2103-2115, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35302168

RESUMEN

Sudden cardiac death (SCD) accounts for up to 25% of deaths in patients with congenital heart disease (CHD). To date, research has largely been driven by observational studies and real-world experience. Drawbacks include varying definitions, incomplete taxonomy that considers SCD as a unitary diagnosis as opposed to a terminal event with diverse causes, inconsistent outcome ascertainment, and limited data granularity. Notwithstanding these constraints, identified higher-risk substrates include tetralogy of Fallot, transposition of the great arteries, cyanotic heart disease, Ebstein anomaly, and Fontan circulation. Without autopsies, it is often impossible to distinguish SCD from non-cardiac sudden deaths. Asystole and pulseless electrical activity account for a high proportion of SCDs, particularly in patients with heart failure. High-quality cardiopulmonary resuscitation is essential to improve outcomes. Pulmonary hypertension and CHD complexity are associated with lower likelihood of successful resuscitation. Risk stratification for primary prevention implantable cardioverter-defibrillators (ICDs) should consider the probability of SCD due to a shockable rhythm, competing causes of mortality, complications of ICD therapy, and associated costs. Risk scores to better estimate probabilities of SCD and CHD-specific guidelines and consensus-based recommendations have been proposed. The subcutaneous ICD has emerged as an attractive alternative to transvenous systems in those with vascular access limitations, prior device infections, intra-cardiac shunts, or a Fontan circulation. Further improving SCD-related outcomes will require a multidimensional approach to research that addresses disease processes and triggers, taxonomy to better reflect underlying pathophysiology, high-risk features, early warning signs, access to high-quality cardiopulmonary resuscitation and specialized care, and preventive therapies tailored to underlying mechanisms.


Asunto(s)
Desfibriladores Implantables , Procedimiento de Fontan , Paro Cardíaco , Cardiopatías Congénitas , Transposición de los Grandes Vasos , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Desfibriladores Implantables/efectos adversos , Procedimiento de Fontan/efectos adversos , Cardiopatías Congénitas/terapia , Humanos , Factores de Riesgo
11.
Hum Mutat ; 43(8): 986-997, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34816521

RESUMEN

The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.


Asunto(s)
Genómica , Programas Informáticos , Biología Computacional , Bases de Datos Genéticas , Frecuencia de los Genes , Humanos , Anotación de Secuencia Molecular , Fenotipo
12.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34791415

RESUMEN

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Asunto(s)
Bases de Datos Genéticas , Genómica , Internet , Programas Informáticos , Animales , Biología Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/clasificación , Plantas/genética , Vertebrados/clasificación , Vertebrados/genética
13.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634797

RESUMEN

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Asunto(s)
COVID-19/virología , Bases de Datos Genéticas , SARS-CoV-2/genética , Navegador Web , Coronaviridae/genética , Variación Genética , Genoma Viral , Humanos , Anotación de Secuencia Molecular
15.
J Pharm Biomed Anal ; 205: 114330, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34479173

RESUMEN

Multi-attribute method (MAM) using peptide map analysis with high resolution mass spectrometry is increasingly common in product characterization and the identification of critical quality attributes (CQAs) of biotherapeutic proteins. Capable of providing structural information specific to amino acid residues, quantifying relative abundance of product variants or degradants, and detecting profile changes between product lots, a robust MAM can replace multiple traditional methods that generate profile-based information for product release and stability testing. In an effort to provide informative and efficient analytical monitoring for monoclonal antibody (mAb) products, from early development to manufacturing quality control, we describe the desired MAM performance profile and address the major scientific challenges in MAM method validation. Furthermore, to support fast speed investigational product development, we describe a platform method validation strategy and results of an optimized MAM workflow. This strategy is applied to support the use of MAM for multiple mAb products with similar structures and physicochemical properties, requiring minimal product-specific method validation activities. Three mAb products were used to demonstrate MAM performance for common and representative product quality attributes. Method validation design and acceptance criteria were guided by the Analytical Target Profile concept, as well as relevant regulatory guidelines to ensure the method is fit-for-purpose. A comprehensive system suitability control strategy was developed, and reported here, to ensure adequate performance of the method including sample preparation, instrument operation, and data analysis. Our results demonstrated sufficient method performance for the characteristics required for quantitative measurement of product variants and degradants.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Aminoácidos , Control de Calidad , Proyectos de Investigación
18.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137190

RESUMEN

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Genómica/métodos , SARS-CoV-2/genética , Vertebrados/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Pandemias , Vertebrados/clasificación
19.
Open Heart ; 7(2)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33361280

RESUMEN

OBJECTIVES: Long-term single-site ventricular pacing may adversely affect ventricular function, due to dyssynchronous systemic ventricular contraction. We sought to determine the incidence, predictors and outcomes of pacing-associated cardiomyopathy (PACM) in an adult congenital heart disease (ACHD) cohort. METHODS: We retrospectively identified all patients in our database with a permanent pacemaker from 2000 to 2019. Patients were followed for the primary endpoint of unexplained decline in systemic ventricular function (PACM) and the secondary endpoint of heart failure admission. RESULTS: Of 2073 patients in our database, 106 had undergone pacemaker implantation. Over a median follow-up of 9.4 years, 25 patients (24%) developed PACM, but only in those with ventricular pacing percentage (VP%) ≥70%; PACM occurred in 0% of those with VP <70% and 47% of those with VP ≥70% (p<0.001). High-burden ventricular pacing (≥70%) remained predictive of PACM in transposition of the great arteries, tetralogy of Fallot and complex biventricular repair subgroups, but not in Fontan patients. Those with PACM were more likely to be admitted with heart failure (44% vs 15%, p=0.002). Cardiac resynchronisation therapy (CRT) upgrade was performed in 11 patients, with 9 responders (82%). CONCLUSIONS: In a cohort of patients with ACHD followed long-term post-pacing, 24% developed cardiomyopathy that was significantly associated with a higher burden of ventricular pacing (VP ≥70%). Given promising response rates to CRT, patients with ACHD expected to pace in the ventricle should be closely monitored for systemic ventricular decline.


Asunto(s)
Cardiomiopatías/etiología , Cardiopatías Congénitas/terapia , Marcapaso Artificial/efectos adversos , Función Ventricular/fisiología , Adolescente , Adulto , Cardiomiopatías/diagnóstico , Cardiomiopatías/fisiopatología , Femenino , Estudios de Seguimiento , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/diagnóstico , Humanos , Masculino , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
20.
Nat Med ; 26(8): 1256-1263, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572268

RESUMEN

Alzheimer's disease (AD) causes unrelenting, progressive cognitive impairments, but its course is heterogeneous, with a broad range of rates of cognitive decline1. The spread of tau aggregates (neurofibrillary tangles) across the cerebral cortex parallels symptom severity2,3. We hypothesized that the kinetics of tau spread may vary if the properties of the propagating tau proteins vary across individuals. We carried out biochemical, biophysical, MS and both cell- and animal-based-bioactivity assays to characterize tau in 32 patients with AD. We found striking patient-to-patient heterogeneity in the hyperphosphorylated species of soluble, oligomeric, seed-competent tau. Tau seeding activity correlates with the aggressiveness of the clinical disease, and some post-translational modification (PTM) sites appear to be associated with both enhanced seeding activity and worse clinical outcomes, whereas others are not. These data suggest that different individuals with 'typical' AD may have distinct biochemical features of tau. These data are consistent with the possibility that individuals with AD, much like people with cancer, may have multiple molecular drivers of an otherwise common phenotype, and emphasize the potential for personalized therapeutic approaches for slowing clinical progression of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Disfunción Cognitiva/genética , Agregación Patológica de Proteínas/genética , Proteínas tau/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Disfunción Cognitiva/patología , Femenino , Heterogeneidad Genética , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación , Agregación Patológica de Proteínas/patología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...