Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 953707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060959

RESUMEN

Background: Heterozygous de novo variants in SAMD9 cause MIRAGE syndrome, a complex multisystem disorder involving Myelodysplasia, Infection, Restriction of growth, Adrenal hypoplasia, Genital phenotypes, and Enteropathy. The range of additional clinical associations is expanding and includes disrupted placental development, poor post-natal growth and endocrine features. Increasingly, milder phenotypic features such as hypospadias in small for gestational age (SGA) boys and normal adrenal function are reported. Some children present with isolated myelodysplastic syndrome (MDS/monosomy 7) without MIRAGE features. Objective: We aimed to investigate: 1) the range of reported SAMD9 variants, clinical features, and possible genotype-phenotype correlations; 2) whether SAMD9 disruption affects placental function and leads to pregnancy loss/recurrent miscarriage (RM); 3) and if pathogenic variants are associated with isolated fetal growth restriction (FGR). Methods: Published data were analyzed, particularly reviewing position/type of variant, pregnancy, growth data, and associated endocrine features. Genetic analysis of SAMD9 was performed in products of conception (POC, n=26), RM couples, (couples n=48; individuals n=96), children with FGR (n=44), SGA (n=20), and clinical Silver-Russell Syndrome (SRS, n=8), (total n=194). Results: To date, SAMD9 variants are reported in 116 individuals [MDS/monosomy 7, 64 (55.2%); MIRAGE, 52 (44.8%)]. Children with MIRAGE features are increasingly reported without an adrenal phenotype (11/52, 21.2%). Infants without adrenal dysfunction were heavier at birth (median 1515 g versus 1020 g; P < 0.05) and born later (median 34.5 weeks versus 31.0; P < 0.05) compared to those with adrenal insufficiency. In MIRAGE patients, hypospadias is a common feature. Additional endocrinopathies include hypothyroidism, hypo- and hyper-glycemia, short stature and panhypopituitarism. Despite this increasing range of phenotypes, genetic analysis did not reveal any likely pathogenic variants/enrichment of specific variants in SAMD9 in the pregnancy loss/growth restriction cohorts studied. Conclusion: MIRAGE syndrome is more phenotypically diverse than originally reported and includes growth restriction and multisystem features, but without adrenal insufficiency. Endocrinopathies might be overlooked or develop gradually, and may be underreported. As clinical features including FGR, severe infections, anemia and lung problems can be non-specific and are often seen in neonatal medicine, SAMD9-associated conditions may be underdiagnosed. Reaching a specific diagnosis of MIRAGE syndrome is critical for personalized management.


Asunto(s)
Insuficiencia Suprarrenal , Hipospadias , Síndromes Mielodisplásicos , Insuficiencia Suprarrenal/complicaciones , Insuficiencia Suprarrenal/genética , Deleción Cromosómica , Cromosomas Humanos Par 7 , Femenino , Retardo del Crecimiento Fetal/genética , Humanos , Hipospadias/complicaciones , Péptidos y Proteínas de Señalización Intracelular , Masculino , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/genética , Fenotipo , Placenta , Embarazo , Síndrome
2.
Nucleic Acids Res ; 50(12): 6735-6752, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35713545

RESUMEN

We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.


Asunto(s)
Metilación de ADN , Embrión de Mamíferos , Humanos , Metilación de ADN/genética , Reproducibilidad de los Resultados , Embrión de Mamíferos/metabolismo , Islas de CpG , Etnicidad
3.
Genet Med ; 23(9): 1636-1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34145395

RESUMEN

PURPOSE: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. METHODS: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. RESULTS: We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. CONCLUSION: This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Inmunohistoquímica , Melanoma/genética , Fenotipo , Neoplasias Cutáneas/genética
4.
Eur J Endocrinol ; 183(6): 581-595, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33055295

RESUMEN

OBJECTIVE: Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1). DESIGN AND METHODS: Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions. RESULTS: Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts. CONCLUSIONS: Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Pruebas Genéticas/métodos , Hormona de Crecimiento Humana/genética , Factor I del Crecimiento Similar a la Insulina/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Hormona de Crecimiento Humana/sangre , Humanos , Lactante , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino
5.
Sci Rep ; 10(1): 13763, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792680

RESUMEN

Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.


Asunto(s)
Viabilidad Fetal/genética , Metabolismo de los Lípidos/genética , Placenta/anomalías , Nexinas de Clasificación/genética , Ataxias Espinocerebelosas/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fenotipo , Fosfolípidos/sangre , Embarazo , Trofoblastos/citología , Pez Cebra
6.
J Med Genet ; 57(10): 683-691, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32054688

RESUMEN

BACKGROUND: Silver-Russell syndrome is an imprinting disorder that restricts growth, resulting in short adult stature that may be ameliorated by treatment. Approximately 50% of patients have loss of methylation of the imprinting control region (H19/IGF2:IG-DMR) on 11p15.5 and 5%-10% have maternal uniparental disomy of chromosome 7. Most published research focuses on the childhood phenotype. Our aim was to describe the phenotypic characteristics of older patients with SRS. METHODS: A retrospective cohort of 33 individuals with a confirmed molecular diagnosis of SRS aged 13 years or above were carefully phenotyped. RESULTS: The median age of the cohort was 29.6 years; 60.6% had a height SD score (SDS) ≤-2 SDS despite 70% having received growth hormone treatment. Relative macrocephaly, feeding difficulties and a facial appearance typical of children with SRS were no longer discriminatory diagnostic features. In those aged ≥18 years, impaired glucose tolerance in 25%, hypertension in 33% and hypercholesterolaemia in 52% were noted. While 9/33 accessed special education support, university degrees were completed in 40.0% (>21 years). There was no significant correlation between quality of life and height SDS. 9/25 were parents and none of the 17 offsprings had SRS. CONCLUSION: Historical treatment regimens for SRS were not sufficient for normal adult growth and further research to optimise treatment is justified. Clinical childhood diagnostic scoring systems are not applicable to patients presenting in adulthood and SRS diagnosis requires molecular confirmation. Metabolic ill-health warrants further investigation but SRS is compatible with a normal quality of life including normal fertility in many cases.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/genética , ARN Largo no Codificante/genética , Síndrome de Silver-Russell/genética , Disomía Uniparental/genética , Adolescente , Adulto , Anciano , Metilación de ADN/genética , Epigénesis Genética , Femenino , Impresión Genómica/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Calidad de Vida , Síndrome de Silver-Russell/patología , Disomía Uniparental/patología , Adulto Joven
7.
Hum Mol Genet ; 28(20): 3466-3474, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31504499

RESUMEN

Recurrent pregnancy loss (RPL) is defined as two or more consecutive miscarriages and affects an estimated 1.5% of couples trying to conceive. RPL has been attributed to genetic, endocrine, immune and thrombophilic disorders, but many cases remain unexplained. We investigated a Bangladeshi family where the proband experienced 29 consecutive pregnancy losses with no successful pregnancies from three different marriages. Whole exome sequencing identified rare genetic variants in several candidate genes. These were further investigated in Asian and white European RPL cohorts, and in Bangladeshi controls. FKBP4, encoding the immunophilin FK506-binding protein 4, was identified as a plausible candidate, with three further novel variants identified in Asian patients. None were found in European patients or controls. In silico structural studies predicted damaging effects of the variants in the structure-function properties of the FKBP52 protein. These were located within domains reported to be involved in Hsp90 binding and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Profound effects on PPIase activity were demonstrated in transiently transfected HEK293 cells comparing wild-type and mutant FKBP4 constructs. Mice lacking FKBP4 have been previously reported as infertile through implantation failure. This study therefore strongly implicates FKBP4 as associated with fetal losses in humans, particularly in the Asian population.


Asunto(s)
Aborto Habitual/genética , Secuenciación del Exoma/métodos , Proteínas de Unión a Tacrolimus/genética , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Mutación Missense/genética , Linaje , Embarazo , Estructura Secundaria de Proteína
8.
F1000Res ; 8: 273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231513

RESUMEN

Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the  PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa , Transferasas de Grupos Nitrogenados/genética , Síndrome de Costilla Pequeña y Polidactilia , Pez Cebra , Animales , Animales Modificados Genéticamente , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Linaje de la Célula , Células HeLa , Humanos , Transgenes
9.
F1000Res ; 8: 90, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497289

RESUMEN

Background: Cyclin-dependent kinase inhibitor 1C (CDKN1C) is a key negative regulator of cell growth encoded by a paternally imprinted/maternally expressed gene in humans. Loss-of-function variants in CDKN1C are associated with an overgrowth condition (Beckwith-Wiedemann Syndrome) whereas "gain-of-function" variants in CDKN1C that increase protein stability cause growth restriction as part of IMAGe syndrome ( Intrauterine growth restriction, Metaphyseal dysplasia, Adrenal hypoplasia and Genital anomalies). As three families have been reported with CDKN1C mutations who have fetal growth restriction (FGR)/Silver-Russell syndrome (SRS) without adrenal insufficiency, we investigated whether pathogenic variants in CDKN1C could be associated with isolated growth restriction or recurrent loss of pregnancy. Methods: Analysis of published literature was undertaken to review the localisation of variants in CDKN1C associated with IMAGe syndrome or fetal growth restriction. CDKN1C expression in different tissues was analysed in available RNA-Seq data (Human Protein Atlas). Targeted sequencing was used to investigate the critical region of CDKN1C for potential pathogenic variants in SRS (n=66), FGR (n=37), DNA from spontaneous loss of pregnancy (n= 22) and women with recurrent miscarriages (n=78) (total n=203). Results: All published single nucleotide variants associated with IMAGe syndrome are located in a highly-conserved "hot-spot" within the PCNA-binding domain of CDKN1C between codons 272-279. Variants associated with familial growth restriction but normal adrenal function currently affect codons 279 and 281. CDKN1C is highly expressed in the placenta compared to adult tissues, which may contribute to the FGR phenotype and supports a role in pregnancy maintenance. In the patient cohorts studied no pathogenic variants were identified in the PCNA-binding domain of CDKN1C. Conclusion: CDKN1C is a key negative regulator of growth. Variants in a very localised "hot-spot" cause growth restriction, with or without adrenal insufficiency. However, pathogenic variants in this region are not a common cause of isolated fetal growth restriction phenotypes or loss-of-pregnancy/recurrent miscarriages.


Asunto(s)
Aborto Habitual/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Retardo del Crecimiento Fetal/genética , Insuficiencia Suprarrenal/genética , Adulto , Femenino , Humanos , Osteocondrodisplasias/genética , Polimorfismo de Nucleótido Simple , Embarazo , Anomalías Urogenitales/genética
10.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29776928

RESUMEN

In this study, differences in the placental microbiota from term and preterm deliveries in a large pregnancy cohort in the United Kingdom were studied by using 16S-targeted amplicon sequencing. The impacts of contamination from DNA extraction, PCR reagents, and the delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analyzed, and differences between spontaneous preterm-, nonspontaneous preterm-, and term-delivered placentas were investigated. DNA from recently delivered placentas was extracted, and screening for bacterial DNA was carried out by using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analyzed for the presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR-blank samples. Differential abundances and between-sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found for negative extractions. Striking differences in the compositions of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU- and genus-level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm-delivery cohort, including organisms that have been associated previously with adverse pregnancy outcomes, specifically Mycoplasma spp. and Ureaplasma spp. However, analyses of the overall community structure did not reveal convincing evidence for the existence of a reproducible "preterm placental microbiome."IMPORTANCE Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the "placental microbiome" in the risk of preterm birth. Consistent with data from previous studies, the abundances of certain clinically relevant species differed between spontaneous preterm- and nonspontaneous preterm- or term-delivered placentas. These results support the view that a proportion of spontaneous preterm births have an intrauterine-infection component. However, an additional observation from this study was that a substantial proportion of sequenced reads were contaminating reads rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing outputs from low-biomass samples such as the placenta.


Asunto(s)
Bacterias/clasificación , Microbiota , Placenta/microbiología , Nacimiento Prematuro/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Estudios de Cohortes , ADN Bacteriano/análisis , Femenino , Humanos , Recién Nacido , Microbiota/genética , Embarazo , ARN Ribosómico 16S/genética , Reino Unido , Vagina/microbiología
11.
Hum Mol Genet ; 27(11): 1927-1940, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635513

RESUMEN

Mutations in SNX14 cause the autosomal recessive cerebellar ataxia 20 (SCAR20). Mutations generally result in loss of protein although several coding region deletions have also been reported. Patient-derived fibroblasts show disrupted autophagy, but the precise function of SNX14 is unknown. The yeast homolog, Mdm1, functions in endoplasmic reticulum (ER)-lysosome/vacuole inter-organelle tethering, but functional conservation in mammals is still required. Here, we show that loss of SNX14 alters but does not block autophagic flux. In addition, we find that SNX14 is an ER-associated protein that functions in neutral lipid homeostasis and inter-organelle crosstalk. SNX14 requires its N-terminal transmembrane helices for ER localization, while the Phox homology (PX) domain is dispensable for subcellular localization. Both SNX14-mutant fibroblasts and SNX14KO HEK293 cells accumulate aberrant cytoplasmic vacuoles, suggesting defects in endolysosomal homeostasis. However, ER-late endosome/lysosome contact sites are maintained in SNX14KO cells, indicating that it is not a prerequisite for ER-endolysosomal tethering. Further investigation of SNX14- deficiency indicates general defects in neutral lipid metabolism. SNX14KO cells display distinct perinuclear accumulation of filipin in LAMP1-positive lysosomal structures indicating cholesterol accumulation. Consistent with this, SNX14KO cells display a slight but detectable decrease in cholesterol ester levels, which is exacerbated with U18666A. Finally, SNX14 associates with ER-derived lipid droplets (LD) following oleate treatment, indicating a role in ER-LD crosstalk. We therefore identify an important role for SNX14 in neutral lipid homeostasis between the ER, lysosomes and LDs that may provide an early intervention target to alleviate the clinical symptoms of SCAR20.


Asunto(s)
Retículo Endoplásmico/genética , Metabolismo de los Lípidos/genética , Nexinas de Clasificación/genética , Ataxias Espinocerebelosas/genética , Autofagia/genética , Retículo Endoplásmico/metabolismo , Endosomas , Técnicas de Inactivación de Genes , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Proteínas de Filamentos Intermediarios/genética , Gotas Lipídicas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/genética , Mutación , Ácido Oléico/farmacología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Nexinas de Clasificación/deficiencia , Nexinas de Clasificación/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/fisiopatología
12.
J Clin Endocrinol Metab ; 103(3): 917-925, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342293

RESUMEN

Context: Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. Design: A prospective cohort study of subjects with a low birth weight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Interventions: Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. Main Outcome Measures: The numbers of CNVs, methylation disturbances, and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.


Asunto(s)
Peso al Nacer/genética , Retardo del Crecimiento Fetal/genética , Recién Nacido Pequeño para la Edad Gestacional , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Metilación de ADN , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Edad Gestacional , Humanos , Recién Nacido , Masculino , Estudios Prospectivos , Secuenciación del Exoma/métodos
13.
Sci Rep ; 7(1): 2441, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28550290

RESUMEN

Non-syndromic cleft lip and/or palate (NSCLP) is a common congenital malformation with a multifactorial model of inheritance. Although several at-risk alleles have been identified, they do not completely explain the high heritability. We postulate that epigenetic factors as DNA methylation might contribute to this missing heritability. Using a Methylome-wide association study in a Brazilian cohort (67 NSCLP, 59 controls), we found 578 methylation variable positions (MVPs) that were significantly associated with NSCLP. MVPs were enriched in regulatory and active regions of the genome and in pathways already implicated in craniofacial development. In an independent UK cohort (171 NSCLP, 177 controls), we replicated 4 out of 11 tested MVPs. We demonstrated a significant positive correlation between blood and lip tissue DNA methylation, indicating blood as a suitable tissue for NSCLP methylation studies. Next, we quantified CDH1 promoter methylation levels in CDH1 mutation-positive families, including penetrants, non-penetrants or non-carriers for NSCLP. We found methylation levels to be significantly higher in the penetrant individuals. Taken together, our results demonstrated the association of methylation at specific genomic locations as contributing factors to both non-familial and familial NSCLP and altered DNA methylation may be a second hit contributing to penetrance.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Metilación de ADN , Penetrancia , Antígenos CD/genética , Brasil , Cadherinas/genética , Niño , Preescolar , Labio Leporino/patología , Fisura del Paladar/patología , Estudios de Cohortes , Islas de CpG/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Regiones Promotoras Genéticas/genética
14.
Hum Mutat ; 38(6): 615-620, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28256047

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long-range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full-term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal-inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent-of-origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.


Asunto(s)
Factores de Transcripción Forkhead/genética , Impresión Genómica , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/anomalías , Hibridación Genómica Comparativa , Metilación de ADN/genética , Femenino , Humanos , Hipertensión Pulmonar , Recién Nacido , Herencia Materna/genética , Mutación , Síndrome de Circulación Fetal Persistente/complicaciones , Síndrome de Circulación Fetal Persistente/patología , Embarazo , Alveolos Pulmonares/patología , Gemelos Monocigóticos
15.
Nat Rev Endocrinol ; 13(2): 105-124, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585961

RESUMEN

This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.


Asunto(s)
Manejo de la Enfermedad , Internacionalidad , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/terapia , Hormona Liberadora de Gonadotropina/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Síndrome de Silver-Russell/metabolismo
16.
Placenta ; 46: 31-37, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27697219

RESUMEN

About 20% of pregnancies are affected by some form of complication. Research has shown that anomalies in implantation, development, and growth of the fetus; ineffective nutrient exchange between mother and fetus due to placental dysfunction; and maternal problems such as hypertension or infection during pregnancy can all lead to adverse pregnancy outcomes. However, the molecular aetiology of such events remains poorly understood. Fetal growth restriction (FGR), recurrent miscarriage (RM), preterm birth (PTB), and pre-eclampsia (PE) are the most common pregnancy complications encountered in the UK and these outcomes can result in an array of morbidities in both mother and baby, and in the most severe cases in mortality. We need to know more about normal pregnancy and where the important triggers are for failure. This prompted us to collect a large set of biological samples with matching clinical data from over 2500 normal and abnormal pregnancies, for use in research into these conditions. This paper outlines the nature of these sample sets and their availability to academia and industry, with the intention that their widespread use in research will make significant contributions to the improvement of maternal and fetal health worldwide (http://www.ucl.ac.uk/tapb/sample-and-data-collections-at-ucl/biobanks-ucl/baby-biobank).


Asunto(s)
Bancos de Muestras Biológicas , Bases de Datos como Asunto , Complicaciones del Embarazo , Femenino , Humanos , Embarazo , Manejo de Especímenes
17.
Am J Hum Genet ; 98(4): 755-62, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27018475

RESUMEN

Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10(-2)). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10(-5); ORallelic = 2.46 [95% CI 1.6-3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10(-9)). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO.


Asunto(s)
Fisura del Paladar/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Sistemas de Lectura Abierta , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Estudios de Casos y Controles , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Quistes/diagnóstico , Quistes/genética , Humanos , Labio/anomalías , Mutación , Polimorfismo de Nucleótido Simple , Grupos Raciales/genética
18.
Eur J Hum Genet ; 24(6): 784-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26508573

RESUMEN

Beckwith-Wiedemann and Silver-Russell syndromes (BWS/SRS) are two imprinting disorders (IDs) associated with disturbances of the 11p15.5 chromosomal region. In BWS, epimutations and genomic alterations within 11p15.5 are observed in >70% of patients, whereas in SRS they are observed in about 60% of the cases. In addition, 10% of the SRS patients carry a maternal uniparental disomy of chromosome 7 11p15.5. There is an increasing demand for prenatal testing of these disorders owing to family history, indicative prenatal ultrasound findings or aberrations involving chromosomes 7 and 11. The complex molecular findings underlying these disorders are a challenge not only for laboratories offering these tests but also for geneticists counseling affected families. The scope of counseling must consider the range of detectable disturbances and their origin, the lack of precise quantitative knowledge concerning the inheritance and recurrence risks for the epigenetic abnormalities, which are hallmarks of these developmental disorders. In this paper, experts in the field of BWS and SRS, including members of the European network of congenital IDs (EUCID.net; www.imprinting-disorders.eu), put together their experience and work in the field of 11p15.5-associated IDs with a focus on prenatal testing. Altogether, prenatal tests of 160 fetuses (122 referred for BWS, 38 for SRS testing) from 5 centers were analyzed and reviewed. We summarize the current knowledge on BWS and SRS with respect to diagnostic testing, the consequences for prenatal genetic testing and counseling and our cumulative experience in dealing with these disorders.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Asesoramiento Genético/normas , Pruebas Genéticas/normas , Humanos , Diagnóstico Prenatal/normas , Síndrome de Silver-Russell/diagnóstico
19.
Reprod Biomed Online ; 31(5): 681-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371709

RESUMEN

Annexin A5 is a placental anti-coagulant protein that contains four nucleotide substitutions (M2 haplotype) in its promoter. This haplotype is a risk factor for recurrent spontaneous abortion (RSA). The influence of the M2 haplotype in the gestational timing of spontaneous abortions, paternal risk and relationships with known risk factors were investigated. European couples (n = 500) who had experienced three or more consecutive spontaneous abortions, and two fertile control groups, were selected for this study. The allele frequency of M2 was significantly higher among patients who had experienced early RSA than among controls (P = 0.002). No difference was found between controls and patients who had undergone late spontaneous abortions. No difference was found between patients who had experienced RSA who had a live birth or no live births, or between patients who were positive or negative for known risk factors. Male and female partners in each group had similar allele frequencies of M2. The M2 haplotype is a risk factor for early spontaneous abortions, before the 12th week of gestation, and confers about the same relative risk to carriers of both sexes. Having one or more M2 allele(s) in combination with other risk factors further increases the RSA risk.


Asunto(s)
Aborto Habitual/genética , Anexina A5/genética , Haplotipos , Regiones Promotoras Genéticas , Adulto , Alelos , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Embarazo , Factores de Riesgo , Población Blanca/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 370(1663): 20140074, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25602077

RESUMEN

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.


Asunto(s)
Desarrollo Fetal/genética , Desarrollo Fetal/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Impresión Genómica/genética , Placenta/metabolismo , Peso al Nacer/fisiología , Proteínas de Unión al Calcio , Vellosidades Coriónicas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Embarazo , Receptores de Somatomedina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...