Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1227006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886073

RESUMEN

Animal manure improves soil fertility and organic carbon, but long-term deposition may contribute to antibiotic resistance genes (ARGs) entering the soil-water environment. Additionally, long-term impacts of applying animal manure to soil on the soil-water microbiome, a crucial factor in soil health and fertility, are not well understood. The aim of this study is to assess: (1) impacts of long-term conservation practices on the distribution of ARGs and microbial dynamics in soil, and runoff; and (2) associations between bacterial taxa, heavy metals, soil health indicators, and ARGs in manures, soils, and surface runoff in a study following 15 years of continuous management. This management strategy consists of two conventional and three conservation systems, all receiving annual poultry litter. High throughput sequencing of the 16S ribosomal RNA was carried out on samples of cattle manure, poultry litter, soil, and runoff collected from each manureshed. In addition, four representative ARGs (intl1, sul1, ermB, and blactx-m-32) were quantified from manures, soil, and runoff using quantitative PCR. Results revealed that conventional practice increased soil ARGs, and microbial diversity compared to conservation systems. Further, ARGs were strongly correlated with each other in cattle manure and soil, but not in runoff. After 15-years of conservation practices, relationships existed between heavy metals and ARGs. In the soil, Cu, Fe and Mn were positively linked to intl1, sul1, and ermB, but trends varied in runoff. These findings were further supported by network analyses that indicated complex co-occurrence patterns between bacteria taxa, ARGs, and physicochemical parameters. Overall, this study provides system-level linkages of microbial communities, ARGs, and physicochemical conditions based on long-term conservation practices at the soil-water-animal nexus.

2.
Front Microbiol ; 12: 617066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897633

RESUMEN

Runoff from land-applied manure and poultry litter is one mechanism by which manure-borne bacteria are transported over large distances in the environment. There is a global concern that antimicrobial resistant (AMR) genes may be transmitted through the food chain from animal manures to soil to surface water. However, details are lacking on the ecology of AMR genes in water runoff as well as how conservation management practices may affect the runoff microbiome or minimize the movement of AMR genes. The aim of this study was to identify microbial community structure and diversity in water runoff following 14-years of poultry litter and cattle manure deposition and to evaluate the amount of AMR genes under five conventional and conservation pasture management strategies. Since 2004, all watersheds received annual poultry litter at a rate of 5.6 Mg ha-1 and were consistently managed. Surface runoff samples were collected from each watershed from 2018 to 2019, characterized using Illumina 16S rRNA gene amplicon sequencing and enumerated for four AMR-associated genes (ermB, sulI, intlI, and blactx-m-32 ) using quantitative PCR. Overall, long-term pasture management influenced water microbial community structure, with effects differing by year (p < 0.05). Bacterial richness (Chao1 index) was influenced by pasture management, with the lowest richness occurring in the control (nearby non-agricultural water source) and the greatest under fields that were hayed (no cattle presence). Runoff bacterial richness in watersheds increased following poultry litter applications, indicating poultry litter is a possible source of bacteria and altered runoff community structure. The blactx-m-32 gene was not detected in any surface water sample. The remaining three AMR genes were absent in the non-agricultural control, but present in agricultural samples. However, there was no impact (p > 0.05) from pasture management on the abundance of these genes, indicating both conventional and conservation practices have similar ecologies for these targets; however, there was a greater detection of sulI genes from runoff in continuously grazed systems in 2019, with hay being lowest in 2019. Results illustrate that the edge of field buffer strips may increase bacterial richness in water runoff, but these changes in richness do not greatly impact target AMR genes in the United States largest land-use category.

3.
Environ Res ; 197: 111011, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774017

RESUMEN

Cattle manure and poultry litter are widely used as fertilizers as they are excellent sources of nutrients; however, potential adverse environmental effects exist during land applications, due to the release of zoonotic bacteria and antimicrobial resistance (AMR) genes. This study was conducted to understand linkages between physiochemical composition, bacterial diversity, and AMR gene presence of cattle manure and poultry litter using quantitative polymerase chain reaction to enumerate four AMR genes (ermB, sulI, intlI, and blactx-m-32), Illumina sequencing of the 16 S region, and analysis of physical and chemical properties. Principal coordinate analysis of Bray-Curtis distance revealed distinct bacterial community structures between the two manure sources. Greater alpha diversity occurred in cattle manure compared to poultry litter (P < 0.05). Redundancy analysis showed a strong relationship between manure physiochemical and composition and bacterial abundance, with positive relationships occurring among electrical conductivity and carbon/nitrogen, and negative associations for total solids and soluble fractions of heavy metals. Cattle manure exhibited greater abundance of macrolide (ermB) and sulfonamide (sulI) resistant genes. Consequently, fresh cattle manure applications may result in greater potential spread of AMR genes to the soil-water environment (relative to poultry litter) and novel best management strategies (such as composting) may reduce the release of AMR genes to the soil-water environment.


Asunto(s)
Antibacterianos , Estiércol , Animales , Antibacterianos/farmacología , Bovinos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Aves de Corral , Suelo
4.
Heliyon ; 7(2): e06238, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33659751

RESUMEN

Producers in Northwest Arkansas and globally need alternative management practices to ensure long-term sustainable and economical use of poultry litter, which is an abundant source of valuable carbon (C), nitrogen (N) and phosphorus (P). Project objectives were to measure the efficacy of conservation management practices (i.e., pasture aeration and subsurface litter incorporation) to reduce nutrient runoff compared to poultry litter surface applications from small watersheds under rainfed and grazed conditions. Watersheds (0.23 ha each) were assigned a treatment [pasture aeration, subsurface litter incorporation, or surface application of litter (positive control)] on a Leadvale (fine-silty, siliceous, thermic Typic Fragiudult) silt loam. Poultry litter was applied annually to each watershed from 2007-2012. Over the 4-yr study period, runoff loads of NO3-N, total nitrogen (TN), soluble reactive phosphorus (SRP), and total phosphorus (TP) varied per conservation practice (P ≤ 0.05). Specifically, average annual loads of NO3-N, TN, SRP, and TP loads were reduced 49, 42, 28, and 35% following pasture aeration and by 78, 72, 55, and 59% from subsurface applying poultry litter, relative to surface applications, respectively. Greatest annual N loads and runoff corresponded with surface poultry litter applications, followed by pasture aeration, with subsurface incorporation of poultry litter resulting in lowest (P ≤ 0.05) TN and NO3-N loads. Overall, subsurface incorporation of poultry litter and pasture aeration are two promising conservation practices for reducing non-point source pollution in watersheds with nutrient imbalances. Further work needs to be done on factors influencing the efficacy of these conservation practices under rainfed conditions, as well as the economic feasibility of these conservation agricultural practices.

5.
PeerJ ; 8: e10258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194426

RESUMEN

The persistence of antimicrobial resistant (AMR) genes in the soil-environment is a concern, yet practices that mitigate AMR are poorly understood, especially in grasslands. Animal manures are widely deposited on grasslands, which are the largest agricultural land-use in the United States. These nutrient-rich manures may contain AMR genes. The aim of this study was to enumerate AMR genes in grassland soils following 14-years of poultry litter and cattle manure deposition and evaluate if best management practices (rotationally grazed with a riparian (RBR) area and a fenced riparian buffer strip (RBS), which excluded cattle grazing and poultry litter applications) relative to standard pasture management (continuously grazed (CG) and hayed (H)) minimize the presence and amount of AMR genes. Quantitative PCR (Q-PCR) was performed to enumerate four AMR genes (ermB, sulI, intlI, and blactx-m-32 ) in soil, cattle manure, and poultry litter environments. Six soil samples were additionally subjected to metagenomic sequencing and resistance genes were identified from assembled sequences. Following 14-years of continuous management, ermB, sulI, and intlI genes in soil were greatest (P < 0.05) in samples collected under long-term continuous grazing (relative to conservation best management practices), under suggesting overgrazing and continuous cattle manure deposition may increase AMR gene presence. In general, AMR gene prevalence increased downslope, suggesting potential lateral movement and accumulation based on landscape position. Poultry litter had lower abundance of AMR genes (ermB, sulI, and intlI) relative to cattle manure. Long-term applications of poultry litter increased the abundance of sulI and intlI genes in soil (P < 0.05). Similarly, metagenomic shotgun sequencing revealed a greater total number of AMR genes under long-term CG, while fewer AMR genes were found in H (no cattle manure) and RBS (no animal manure or poultry litter). Results indicate long-term conservation pasture management practices (e.g., RBS and RBR) and select animal manure (poultry litter inputs) may minimize the presence and abundance of AMR genes in grassland soils.

6.
J Environ Qual ; 49(1): 85-96, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33016357

RESUMEN

Phosphorus (P) runoff from pastures can cause accelerated eutrophication of surface waters. However, few long-term studies have been conducted on the effects of best management practices, such as rotational grazing and/or buffer strips on P losses from pastures. The objective of this study was to evaluate the long-term effects of grazing management and buffer strips on P runoff from pastures receiving annual (5.6 Mg ha-1 ) poultry litter applications. A 14-yr study was conducted on 15 small watersheds (0.14 ha) with five treatments: hayed (H), continuously grazed (CG), rotationally grazed (R), rotationally grazed with an unfertilized buffer strip (RB), and rotationally grazed with an unfertilized fenced riparian buffer (RBR). Runoff samples were collected using automatic samplers during runoff events. Average annual runoff volumes from H (40 mm yr-1 ) and RBR (48 mm yr-1 ) were lower than CG and RB, which were both 65 mm yr-1 , and from R (67 mm yr-1 ). Rotational grazing alone did not reduce P loads compared with continuous grazing (1.88 and 1.71 kg P ha-1 for R and CG, respectively). However, compared with CG, total P losses from RB pastures were reduced 36% with unfertilized buffer strips (1.21 kg P ha-1 ), 60% in RBR watersheds with unfertilized fenced riparian buffer strips (0.74 kg P ha-1 ), and 49% by converting pastures to hayfields (0.97 kg P ha-1 ). Hence, the use of unfertilized buffer strips, unfertilized fenced riparian buffer strips, or converting pastures to hayfields are effective best management practices for reducing P runoff in U.S. pasture systems.


Asunto(s)
Fósforo , Aves de Corral , Animales , Estiércol , Movimientos del Agua
7.
Front Microbiol ; 10: 2639, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803164

RESUMEN

Since the onset of land application of poultry litter, transportation of microorganisms, antibiotics, and disinfectants to new locations has occurred. While some studies provide evidence that antimicrobial resistance (AMR), an evolutionary phenomenon, could be influenced by animal production systems, other research suggests AMR originates in the environment from non-anthropogenic sources. In addition, AMR impacts the effective prevention and treatment of poultry illnesses and is increasingly a threat to global public health. Therefore, there is a need to understand the dissemination of AMR genes to the environment, particularly those directly relevant to animal health using the One Health Approach. This review focuses on the potential movement of resistance genes to the soil via land application of poultry litter. Additionally, we highlight impacts of AMR on microbial ecology and explore hypotheses explaining gene movement pathways from U.S. broiler operations to the environment. Current approaches for decreasing antibiotic use in U.S. poultry operations are also described in this review.

8.
PeerJ ; 7: e7839, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31592358

RESUMEN

Soil microorganisms are important for maintaining soil health, decomposing organic matter, and recycling nutrients in pasture systems. However, the impact of long-term conservation pasture management on soil microbial communities remains unclear. Therefore, soil microbiome responses to conservation pasture management is an important component of soil health, especially in the largest agricultural land-use in the US. The aim of this study was to identify soil microbiome community differences following 13-years of pasture management (hayed (no cattle), continuously grazed, rotationally grazed with a fenced, un-grazed and unfertilized buffer strip, and a control (no poultry litter or cattle manure inputs)). Since 2004, all pastures (excluding the control) received annual poultry litter at a rate of 5.6 Mg ha-1. Soil samples were collected at a 0-15 cm depth from 2016-2017 either pre or post poultry litter applications, and bacterial communities were characterized using Illumina 16S rRNA gene amplicon sequencing. Overall, pasture management influenced soil microbial community structure, and effects were different by year (P < 0.05). Soils receiving no poultry litter or cattle manure had the lowest richness (Chao). Continuously grazed systems had greater (P < 0.05) soil community richness, which corresponded with greater soil pH and nutrients. Consequently, continuously grazed systems may increase soil diversity, owing to continuous nutrient-rich manure deposition; however, this management strategy may adversely affect aboveground plant communities and water quality. These results suggest conservation pasture management (e.g., rotationally grazed systems) may not improve microbial diversity, albeit, buffer strips were reduced nutrients and bacterial movement as evident by low diversity and fertility in these areas compared to areas with manure or poultry litter inputs. Overall, animal inputs (litter or manure) increased soil microbiome diversity and may be a mechanism for improved soil health.

9.
Environ Sci Pollut Res Int ; 26(15): 14930-14931, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31012073

RESUMEN

Fig. 1. was amended to reduce the size of the map and improve formatting of the manuscript. The authors claim this amendment does not affect the information being conveyed.

10.
Environ Sci Pollut Res Int ; 26(15): 14920-14929, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30911970

RESUMEN

In 2008, the Mulberry River, a National Wild and Scenic River, was listed as impaired due to low pH (below pH 6.0). Over the last 50 years, the volume of conifers in the Ozark region has increased 115% since 1978 which may result in the acidification of nearby aquatic ecosystems. The objective of this study was to determine if differences exist in soil and litter chemical properties between deciduous and coniferous tree stands. Aboveground litter (n = 200) and soil (n = 400) at 0- to 5- and 5- to 15-cm depths were collected at paired deciduous and coniferous stands at 10 locations within the Mulberry River watershed and analyzed for a suite of chemical parameters. There were no differences (P > 0.05) in several measures of soil acidity between deciduous and coniferous stands. Litter collected from the coniferous stands was more acidic than deciduous litter (4.4 vs 4.7; P < 0.05). Cation exchange capacity, exchangeable Ca and Mg, and water-soluble P and Mg contents differed (P < 0.05) by stand and depth. Cation exchange capacity and exchangeable Ca and Mg were greatest in the 0- to 5-cm depth interval of the coniferous stands. Water-soluble P and Mg contents were greatest within the 0- to 5-cm depth interval which did not differ (P > 0.05) between stand but were greater than the 5- to 15-cm depth interval. Although limited to the top 15-cm of soil, the similarity in soil acidity between stands suggests that conifer growth may not be a substantial source of acidity to the Mulberry River.


Asunto(s)
Suelo/química , Tracheophyta , Arkansas , Calcio/análisis , Cationes/análisis , Ecosistema , Magnesio/análisis , Fósforo/análisis , Ríos , Tracheophyta/química , Árboles
11.
J Environ Qual ; 47(3): 530-537, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864173

RESUMEN

Adding alum to poultry litter is a best management practice used to stabilize P in less soluble forms, reducing nonpoint-source P runoff. However, little research has been conducted on how alum additions to litter affect subsequent leaching of P from soil. The objective of this study was to evaluate the effects of alum-treated versus untreated poultry litter on P leaching from soil cores receiving long-term poultry litter applications. Two intact soil cores were taken from each of 52 plots in a long-term study with 13 treatments: a control, four rates each of untreated and alum-treated litter (2.24, 4.49, 6.72, and 8.96 Mg ha), and four rates of ammonium nitrate (65, 130, 195, and 260 kg N ha). One core from each plot received the same fertilizer as for the previous 20 yr, whereas the other was unfertilized in the study year, resulting in a total of 25 treatments. Cores were exposed to natural rainfall, and P leaching was measured for 1 yr. The average soluble reactive P concentrations in the leachate varied from 0.16 to 0.44 mg P L in fertilized alum-treated cores, whereas leachate from cores fertilized with untreated litter ranged from 0.40 to 2.64 mg P L. At the highest litter rate (8.96 Mg ha), alum reduced total dissolved P and total P concentrations in leachate by 83 and 80%, respectively, compared with untreated litter. These results indicate that alum additions to poultry litter significantly reduced soluble and total P fractions in leachate.


Asunto(s)
Compuestos de Alumbre/química , Estiércol , Fósforo/química , Animales , Fósforo/análisis , Aves de Corral , Suelo
12.
J Environ Qual ; 47(3): 471-479, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864176

RESUMEN

Water-extractable P (WEP) in manure and manure compost is widely used as an indicator of P release to runoff from manure and compost that are land applied. A survey of 600 manures and composts was conducted to assess trends in WEP (dry weight equivalent) related to manure and compost types from sources in the Mid-Atlantic region. Manure and compost WEP ranged from 0.2 to 20.8 g kg. Mean WEP was highest in turkey and swine manures (manure: 4.1-5.6 g kg; no composts tested), followed by layer and broiler chicken manures (manure: 3.0-3.5 g kg; compost: 4.6-5.1 g kg), cattle manure (dairy and beef manure: 2.1-2.8 g kg; compost: 1.1-2.7 g kg), and horse manure (manure: 2.7 g kg; compost: 1.9 g kg). Across all manures and composts, WEP was negatively correlated with manure dry matter content ( = 0.42, < 0.001). Moreover, WEP was strongly correlated ( = 0.66, < 0.001) to degree of P saturation expressed as a molar ratio of total P to total metals (Ca, Mg, Fe, Al, and Mn). Although WEP levels of beef, broiler chicken, and turkey manures from this survey are similar to those from a decade ago, WEP is now significantly lower for dairy (30%, < 0.001), swine (46%, < 0.001), and layer chickens (39%, < 0.05). Lower WEP resulted from decreasing total P and/or increasing P sorption capacity, combined with increasing dry matter content. Results highlight the potential to use degree of P saturation to predict WEP and suggest an opportunity to reduce WEP by managing manure handling, storage, and chemistry.


Asunto(s)
Compostaje , Estiércol , Fósforo/química , Animales , Bovinos , Pollos , Fósforo/análisis , Agua
13.
Anim Sci J ; 89(7): 1002-1010, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29708627

RESUMEN

The purpose of this study was to evaluate the effect of humic acids (HA) on intestinal viscosity, leaky gut and ammonia excretion in a 24 hr feed restriction (FR) model to induce intestinal permeability in chickens. One-day-old male Cobb-Vantress broilers were randomly allocated to one of two groups (n = 25 chickens), with or without 0.2% of isolated HA from worm-compost, and placed in brooder batteries. Chicks had ad libitum access to water and feed for 14 days. Intestinal permeability was induced by 24 hr FR starting at 14 days. At 15 days of age, chickens in both groups were given an appropriate dose of fluorescein isothiocyanate dextran (FITC-d) by oral gavage. Intestine and liver samples were also collected to evaluate viscosity and bacterial translocation (BT), respectively. An increase (p < .05) in intestinal viscosity was observed in the experimental group consuming 0.2% of HA and was confirmed in a published in vitro digestion model that simulates the chemical and physical conditions of the crop, proventriculus and intestine of chickens. Furthermore, the treated group also showed a significant reduction in FITC-d, liver BT and ammonia in the manure. These results suggest that HA have a positive impact in intestinal integrity in chickens.


Asunto(s)
Amoníaco/metabolismo , Alimentación Animal , Pollos/metabolismo , Pollos/microbiología , Dieta/veterinaria , Sustancias Húmicas , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Animales , Traslocación Bacteriana , Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Hígado/metabolismo , Hígado/microbiología , Masculino , Estiércol/análisis , Estiércol/microbiología , Permeabilidad , Factores de Tiempo , Viscosidad
14.
J Environ Qual ; 47(2): 263-269, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29634801

RESUMEN

Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( < 0.05) for KHSO (7.6 Mg ha) and NaHSO (7.5 Mg ha) scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer.


Asunto(s)
Amoníaco/química , Fertilizantes , Nitrógeno/análisis , Fósforo/análisis , Animales , Pollos , Aves de Corral , Suelo
15.
Geochem Trans ; 19(1): 7, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29468334

RESUMEN

Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using 31P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was myo-inositol hexaphosphate (myo-IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of myo-IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of myo-IHP in M3 appeared to be linked to cations, with substantially more myo-IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.

16.
Artículo en Inglés | MEDLINE | ID: mdl-29381414

RESUMEN

In-house windrowing between flocks is an emerging sanitary management practice to partially disinfect the built-up litter in broiler houses. However, this practice may also increase ammonia (NH3) emission from the litter due to the increase in litter temperature. The objectives of this study were to develop mathematical models to estimate NH3 emission rates from broiler houses practicing in-house windrowing between flocks. Equations to estimate mass-transfer areas form different shapes windrowed litter (triangular, rectangular, and semi-cylindrical prisms) were developed. Using these equations, the heights of windrows yielding the smallest mass-transfer area were estimated. Smaller mass-transfer area is preferred as it reduces both emission rates and heat loss. The heights yielding the minimum mass-transfer area were 0.8 and 0.5 m for triangular and rectangular windrows, respectively. Only one height (0.6 m) was theoretically possible for semi-cylindrical windrows because the base and the height were not independent. Mass-transfer areas were integrated with published process-based mathematical models to estimate the total house NH3 emission rates during in-house windrowing of poultry litter. The NH3 emission rate change calculated from the integrated model compared well with the observed values except for the very high NH3 initial emission rate from mechanically disturbing the litter to form the windrows. This approach can be used to conveniently estimate broiler house NH3 emission rates during in-house windrowing between flocks by simply measuring litter temperatures.


Asunto(s)
Contaminación del Aire Interior/análisis , Amoníaco/análisis , Amoníaco/metabolismo , Vivienda para Animales , Modelos Teóricos , Aves de Corral , Animales , Animales Domésticos , Pollos , Residuos Sólidos , Estadística como Asunto , Temperatura
17.
PLoS Med ; 14(12): e1002471, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29261655

RESUMEN

BACKGROUND: Excessive haemorrhage at cesarean section requires donor (allogeneic) blood transfusion. Cell salvage may reduce this requirement. METHODS AND FINDINGS: We conducted a pragmatic randomised controlled trial (at 26 obstetric units; participants recruited from 4 June 2013 to 17 April 2016) of routine cell salvage use (intervention) versus current standard of care without routine salvage use (control) in cesarean section among women at risk of haemorrhage. Randomisation was stratified, using random permuted blocks of variable sizes. In an intention-to-treat analysis, we used multivariable models, adjusting for stratification variables and prognostic factors identified a priori, to compare rates of donor blood transfusion (primary outcome) and fetomaternal haemorrhage ≥2 ml in RhD-negative women with RhD-positive babies (a secondary outcome) between groups. Among 3,028 women randomised (2,990 analysed), 95.6% of 1,498 assigned to intervention had cell salvage deployed (50.8% had salvaged blood returned; mean 259.9 ml) versus 3.9% of 1,492 assigned to control. Donor blood transfusion rate was 3.5% in the control group versus 2.5% in the intervention group (adjusted odds ratio [OR] 0.65, 95% confidence interval [CI] 0.42 to 1.01, p = 0.056; adjusted risk difference -1.03, 95% CI -2.13 to 0.06). In a planned subgroup analysis, the transfusion rate was 4.6% in women assigned to control versus 3.0% in the intervention group among emergency cesareans (adjusted OR 0.58, 95% CI 0.34 to 0.99), whereas it was 2.2% versus 1.8% among elective cesareans (adjusted OR 0.83, 95% CI 0.38 to 1.83) (interaction p = 0.46). No case of amniotic fluid embolism was observed. The rate of fetomaternal haemorrhage was higher with the intervention (10.5% in the control group versus 25.6% in the intervention group, adjusted OR 5.63, 95% CI 1.43 to 22.14, p = 0.013). We are unable to comment on long-term antibody sensitisation effects. CONCLUSIONS: The overall reduction observed in donor blood transfusion associated with the routine use of cell salvage during cesarean section was not statistically significant. TRIAL REGISTRATION: This trial was prospectively registered on ISRCTN as trial number 66118656 and can be viewed on http://www.isrctn.com/ISRCTN66118656.


Asunto(s)
Pérdida de Sangre Quirúrgica/prevención & control , Transfusión de Sangre Autóloga/métodos , Cesárea , Recuperación de Sangre Operatoria/métodos , Adulto , Donantes de Sangre , Cesárea/efectos adversos , Cesárea/métodos , Femenino , Humanos , Planificación de Atención al Paciente , Embarazo , Pronóstico , Resultado del Tratamiento
18.
J Environ Qual ; 46(3): 498-504, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28724100

RESUMEN

An emerging poultry manure management practice is in-house windrowing to disinfect the litter. However, this practice is likely to increase emissions of ammonia (NH) and nitrous oxide (NO) from the windrowed litter. The objective of this study was to quantitatively compare NH and NO emissions from broiler houses with and without in-house windrowing. Two broiler houses at a commercial farm were used to compare the NH and NO emissions. Gas emission measurements were conducted continuously and simultaneously for both the control house (without windrowing) and the house with windrowing during the same production periods. The house emission rates were calculated by multiplying the hourly mean gas concentrations and the ventilation rates. The windrowed litter temperature was significantly higher than that of the control litter. The impact of downtime (the time lapse between flocks, during which the bird house is empty) windrowing litter on pathogen reduction was inconclusive because of very low or no recovery of both and spp. from control or windrowed litter samples, respectively. The windrowing house NH emissions were 26.2 and 16.6 kg d house, whereas for the control house, they were 14.6 and 12.8 kg d house in 2012 and 2013, respectively. The NO emissions from the windrowing house were also higher than those from the control house. The total NH and NO emissions from broiler houses practicing windrowing litter management were estimated to be 35.0 and 4.43 g bird, respectively, compared with 31.9 and 3.89 g bird for the control house, respectively.


Asunto(s)
Amoníaco/análisis , Vivienda para Animales , Óxido Nitroso/análisis , Animales , Pollos , Estiércol
19.
J Environ Qual ; 45(4): 1421-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27380093

RESUMEN

Treating poultry litter with alum is a best management practice that reduces phosphorus (P) runoff and ammonia (NH) emissions. However, alum prices have increased substantially during the past decade. The goal of this research was to develop inexpensive manure amendments that are as effective as alum in reducing NH volatilization and P runoff. Sixteen amendments were developed using mixtures of alum mud, bauxite ore, sulfuric acid, liquid alum, and water. Alum mud is the residual left over from alum manufacture when produced by reacting bauxite with sulfuric acid. A laboratory NH volatilization study was conducted using 11 treatments: untreated poultry litter, poultry litter treated with liquid or dry alum, or eight new mixtures. All of the litter amendments tested resulted in significantly lower NH volatilization than untreated litter. Dry and liquid alum reduced NH losses by 86 and 75%, respectively. The eight new litter amendments reduced NH losses from 62 to 73% compared with untreated litter, which was not significantly different from liquid alum; the three most effective mixtures were not significantly different from dry alum. Water-extractable P (WEP) was significantly reduced by all of the amendments, three of which resulted in significantly lower WEP than dry alum. The most promising new amendments were mixtures of alum mud, bauxite, and sulfuric acid. The potential impact of these amendments could be enormous because they could be produced for less than half the price of alum while being as effective in reducing NH emissions and P runoff.


Asunto(s)
Amoníaco/química , Estiércol , Animales , Fósforo , Aves de Corral , Volatilización
20.
J Environ Qual ; 45(4): 1413-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27380092

RESUMEN

Treating poultry litter with alum has been shown to lower ammonia (NH) emissions and phosphorus (P) runoff losses. Two long-term studies were conducted to assess the effects of alum-treated poultry litter on P availability, leaching, and runoff under pasture conditions. From 1995 to 2015, litter was applied annually in a paired watershed study comparing alum-treated and untreated litter and in a small plot study comparing 13 treatments (an unfertilized control, four rates of alum-treated litter, four rates of untreated litter, and four rates of NHNO). In the paired watershed study, total P loads in runoff were 231% higher from pasture receiving untreated litter (1.96 kg P ha) than from that receiving alum-treated litter (0.85 kg P ha). In both studies, alum-treated litter resulted in significantly higher Mehlich III P (M3-P) and lower water-extractable P at the soil surface, reflecting greater retention of applied P and lesser availability of that P to runoff or leaching. In soils fertilized with alum-treated litter, M3-P was much higher when analyzed by inductively coupled argon plasma emission spectrometry than by colorimetry, possibly due to the formation of aluminum phytate. Indeed, alum-treated poultry litter leached less P over the 20-yr study: M3-P at 10 to 50 cm was 266% greater in plots fertilized with untreated litter (331 kg M3-P ha) than with alum-treated litter (124 kg M3-P ha). This research provides compelling evidence that treating poultry litter with alum provides short-term and long-term benefits to P conservation and water quality.


Asunto(s)
Estiércol , Fósforo/análisis , Compuestos de Alumbre , Animales , Aves de Corral , Suelo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...