Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 18(4)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37187175

RESUMEN

A transient two-dimensional acoustic boundary element solver is coupled to a potential flow boundary element solver via Powell's acoustic analogy to determine the acoustic emission of isolated hydrofoils performing biologically-inspired motions. The flow-acoustic boundary element framework is validated against experimental and asymptotic solutions for the noise produced by canonical vortex-body interactions. The numerical framework then characterizes the noise production of an oscillating foil, which is a simple representation of a fish caudal fin. A rigid NACA 0012 hydrofoil is subjected to combined heaving and pitching motions for Strouhal numbers (0.03

Asunto(s)
Peces , Natación , Animales , Fenómenos Biomecánicos , Movimiento (Física)
2.
Bioinspir Biomim ; 18(1)2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36347044

RESUMEN

When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations. We found that asymmetric pitch kinematics do affect near-boundary equilibria, resulting in the equilibria shifting either closer to or away from the planar boundary. The magnitude of the shift depends on whether the pitch kinematics have spatial asymmetry (e.g. a bias angle,θ0) or temporal asymmetry (e.g. a stroke-speed ratio,τ). Swimming at stable equilibrium requires less active control, while shifting the equilibrium closer to the boundary can result in higher thrust with no measurable change in propulsive efficiency. Our work reveals how asymmetric kinematics could be used to fine-tune a hydrofoil's interaction with a nearby boundary, and it offers a starting point for understanding how fish and birds use asymmetries to swim near substrates, water surfaces, and sidewalls.


Asunto(s)
Aves , Natación , Animales , Fenómenos Biomecánicos , Peces
3.
Bioinspir Biomim ; 17(6)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36065966

RESUMEN

We present new measurements of non-uniformly flexible pitching foils fabricated with a rigid leading section joined to a flexible trailing section. This construction enables us to vary the bending pattern and resonance condition of the foils independently. A novel effective flexibility, defined as the ratio of added mass forces to elastic forces, is proposed and shown to provide a scaling for the natural frequencies of the fluid-structural system. Foils with very flexible trailing sections ofEI< 1.81 × 10-5N m2do not show a detectable resonance and are classified as 'non-resonating' as opposed to 'resonating' foils. Moreover, the non-resonating foils exhibit a novel bending pattern where the foil has a discontinuous hinge-like deflection instead of the smooth beam-like deflection of the resonating foils. Performance measurements reveal that both resonating and non-resonating foils can achieve high propulsive efficiencies of around 50% or more. It is discovered that non-uniformly flexible foils outperform their rigid and uniformly flexible counterparts, and that there is an optimal flexion ratio from 0.4 ⩽λ⩽ 0.7 that maximizes the efficiency. Furthermore, this optimal range coincides with the flexion ratios observed in nature. Performance is also compared under the same dimensionless flexural rigidity,R*, which highlights that at the same flexion ratio more flexible foils achieve higher peak efficiencies. Overall, to achieve high propulsive efficiency non-uniformly flexible hydrofoils should (1) oscillate above their first natural frequency, (2) have a flexion ratio in the range of 0.4 ⩽λ⩽ 0.7 and (3) have a small dimensionless rigidity at their optimal flexion ratio. Scaling laws for rigid pitching foils are found to be valid for non-uniformly flexible foils as long as the measured amplitude response is used and the deflection angle of the trailing sectionß is < 45°. This work provides guidance for the development of high-performance underwater vehicles using simple purely pitching bio-inspired propulsive drives.


Asunto(s)
Modelos Biológicos , Natación , Fenómenos Biomecánicos , Natación/fisiología
4.
Biomimetics (Basel) ; 5(2)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244490

RESUMEN

Many species of fish gather in dense collectives or schools where there are significant flow interactions from their shed wakes. Commonly, these swimmers shed a classic reverse von Kármán wake, however, schooling eels produce a bifurcated wake topology with two vortex rings shed per oscillation cycle. To examine the schooling interactions of a hydrofoil with a bifurcated wake topology, we present tomographic particle image velocimetry (tomo PIV) measurements of the flow interactions and direct force measurements of the performance of two low-aspect-ratio hydrofoils ( = 0 . 5 ) in an in-line and a staggered arrangement. Surprisingly, when the leader and follower are interacting in either arrangement there are only minor alterations to the flowfields beyond the superposition of the flowfields produced by the isolated leader and follower. Motivated by this finding, Garrick's linear theory, a linear unsteady hydrofoil theory based on a potential flow assumption, was adapted to predict the lift and thrust performance of the follower. Here, the follower hydrofoil interacting with the leader's wake is considered as the superposition of an isolated pitching foil with a time-varying cross-stream velocity derived from the wake flow measurements of the isolated leader. Linear theory predictions accurately capture the time-averaged lift force and some of the major peaks in thrust derived from the follower interacting with the leader's wake in a staggered arrangement. The thrust peaks that are not predicted by linear theory are likely driven by spatial variations in the flowfield acting on the follower or nonlinear flow interactions; neither of which are accounted for in the simple theory. This suggests that unsteady potential flow theory that does account for spatial variations in the flowfield acting on a hydrofoil can provide a relatively simple framework to understand and model the flow interactions that occur in schooling fish. Additionally, schooling eels can derive thrust and efficiency increases of 63-80% in either a in-line or a staggered arrangement where the follower is between two branched momentum jets or with one momentum jet branch directly impinging on it, respectively.

5.
J R Soc Interface ; 17(163): 20190655, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32093541

RESUMEN

Cetaceans convert dorsoventral body oscillations into forward velocity with a complex interplay between their morphological and kinematic features and the fluid environment. However, it is unknown to what extent morpho-kinematic features of cetaceans are intertwined to maximize their efficiency. By interchanging the shape and kinematic variables of five cetacean species, the interplay of their flukes morpho-kinematic features is examined by characterizing their thrust, power and propulsive efficiency. It is determined that the shape and kinematics of the flukes have considerable influence on force production and power consumption. Three-dimensional heaving and pitching scaling laws are developed by considering both added mass and circulatory-based forces, which are shown to closely model the numerical data. Using the scaling relations as a guide, it is determined that the added mass forces are important in predicting the trend between the efficiency and aspect ratio, however, the thrust and power are driven predominately by the circulatory forces. The scaling laws also reveal that there is an optimal dimensionless heave-to-pitch ratio h* that maximizes the efficiency. Moreover, the optimal h* varies with the aspect ratio, the amplitude-to-chord ratio and the Lighthill number. This indicates that the shape and kinematics of propulsors are intertwined, that is, there are specific kinematics that are tailored to the shape of a propulsor in order to maximize its propulsive efficiency.


Asunto(s)
Hidrodinámica , Trematodos , Animales , Fenómenos Biomecánicos , Cetáceos , Natación
6.
Bioinspir Biomim ; 13(4): 045002, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29671409

RESUMEN

We present experiments that examine the modes of interaction, the collective performance and the role of three-dimensionality in two pitching propulsors in an in-line arrangement. Both two-dimensional foils and three-dimensional rectangular wings of AR = 2 are examined. In contrast to previous work, two interaction modes distinguished as the coherent and branched wake modes are not observed to be directly linked to the propulsive efficiency, although they are linked to peak thrust performance and minimum power consumption as previously described (Boschitsch et al 2014 Phys. Fluids 26 051901). In fact, in closely-spaced propulsors peak propulsive efficiency of the follower occurs near its minimum power and this condition reveals a branched wake mode. Alternatively, for propulsors spaced far apart peak propulsive efficiency of the follower occurs near its peak thrust and this condition reveals a coherent wake mode. By examining the collective performance, it is discovered that there is an optimal spacing between the propulsors to maximize the collective efficiency. For two-dimensional foils the optimal spacing of X * = 0.75 and the synchrony of ϕ = 2π / 3 leads to a collective efficiency and thrust enhancement of 42% and 38%, respectively, as compared to two isolated foils. In comparison, for AR = 2 wings the optimal spacing of X * = 0.25 and the synchrony of ϕ = 7 π / 6 leads to a collective efficiency and thrust enhancement of 25% and 15%, respectively. In addition, at the optimal conditions the collective lateral force coefficients in both the two- and three-dimensional cases are negligible, while operating off these conditions can lead to non-negligible lateral forces. Finally, the peak efficiency of the collective and the follower are shown to have opposite trends with increasing spacing in two- and three-dimensional flows. This is correlated to the breakdown of the impinging vortex on the follower wing in three-dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions.


Asunto(s)
Aletas de Animales/fisiología , Modelos Biológicos , Natación/fisiología , Animales , Conducta Animal/fisiología , Fenómenos Biomecánicos , Biomimética , Simulación por Computador , Peces/fisiología , Hidrodinámica , Imagenología Tridimensional , Reología , Alas de Animales/fisiología
7.
J Exp Biol ; 221(Pt 6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29487154

RESUMEN

For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray (Mobula birostris), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s-1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies.


Asunto(s)
Elasmobranquios/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...