Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31266901

RESUMEN

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Asunto(s)
Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Almidón/metabolismo , beta-Amilasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Proteínas Portadoras , Clonación Molecular , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Fosforilación , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilasa/genética
2.
Plant Physiol ; 173(2): 956-969, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27923987

RESUMEN

Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/enzimología , Germinación , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Semillas/embriología , Semillas/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Vías Biosintéticas/efectos de los fármacos , Disulfuros/metabolismo , Activación Enzimática/efectos de los fármacos , Germinación/efectos de los fármacos , Giberelinas/biosíntesis , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Semillas/efectos de los fármacos , Alineación de Secuencia , Especificidad por Sustrato/efectos de los fármacos , Triazoles/farmacología
3.
PLoS One ; 10(8): e0132863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241330

RESUMEN

Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s") which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary event, occurring first in ancient Eukaryotes, was the acquisition of a conserved aspartate in classic Motif 5. This has been inherited subsequently by PP2C7s, eukaryotic PP2Cs and bacterial Group I PP2Cs, where it is crucial to the formation of a third metal binding pocket, and catalysis.


Asunto(s)
Proteínas Bacterianas/genética , Chlorophyta/enzimología , Evolución Molecular , Genes de Plantas , Fosfoproteínas Fosfatasas/genética , Fotosíntesis/genética , Proteínas de Plantas/genética , Plantas/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Chlorophyta/genética , Cloroplastos/enzimología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Magnesio/fisiología , Mitocondrias/enzimología , Estructura Molecular , Fosfoproteínas Fosfatasas/química , Filogenia , Proteínas de Plantas/química , Plantas/genética , Proteína Fosfatasa 2C , Estructura Secundaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Almidón/metabolismo
4.
Biochem Biophys Res Commun ; 458(4): 739-44, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25666948

RESUMEN

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/química , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biología Computacional , Eucariontes , Regulación de la Expresión Génica de las Plantas , Humanos , Péptidos y Proteínas de Señalización Intercelular , Mitosis , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia
5.
Biochem Biophys Res Commun ; 453(3): 432-7, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25281536

RESUMEN

Protein phosphatase 1 (PP1), a serine/threonine protein phosphatase, controls diverse key cellular events. PP1 catalytic subunits form complexes with a variety of interacting proteins that control its ability to dephosphorylate substrates. Here we show that the human mitotic kinesin-8, KIF18A, directly interacts with PP1γ through a conserved RVxF motif. Our phylogenetic analyses of the kinesins further uncovered the broad conservation of this interaction potential within the otherwise highly diverse motor-protein superfamily. This suggests an ancestral origin of PP1 recruitment to KIF18A and a strategic role in human mitotic cells.


Asunto(s)
Cinesinas/metabolismo , Mitosis , Proteína Fosfatasa 1/metabolismo , Sitios de Unión , Células HeLa , Humanos , Filogenia
6.
Trends Plant Sci ; 19(7): 471-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24534096

RESUMEN

Phosphoglucan phosphatases are novel enzymes that remove phosphates from complex carbohydrates. In plants, these proteins are vital components in the remobilization of leaf starch at night. Breakdown of starch is initiated through reversible glucan phosphorylation to disrupt the semi-crystalline starch structure at the granule surface. The phosphoglucan phosphatases starch excess 4 (SEX4) and like-SEX4 2 (LSF2) dephosphorylate glucans to provide access for amylases that release maltose and glucose from starch. Another phosphatase, LSF1, is a putative inactive scaffold protein that may act as regulator of starch degradative enzymes at the granule surface. Absence of these phosphatases disrupts starch breakdown, resulting in plants accumulating excess starch. Here, we describe recent advances in understanding the biochemical and structural properties of each of these starch phosphatases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Luz , Datos de Secuencia Molecular , Oxidación-Reducción , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Hojas de la Planta/metabolismo , Alineación de Secuencia
7.
FEBS J ; 280(2): 538-48, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22372537

RESUMEN

Starch is the major carbohydrate reserve in plants, and is degraded for growth at night. Starch breakdown requires reversible glucan phosphorylation at the granule surface by novel dikinases and phosphatases. The dual-specificity phosphatase starch excess 4 (SEX4) is required for glucan desphosphorylation; however, regulation of the enzymatic activity of SEX4 is not well understood. We show that SEX4 switches between reduced (active) and oxidized (inactive) states, suggesting that SEX4 is redox-regulated. Although only partial reactivation of SEX4 was achieved using artificial reductants (e.g. dithiothreitol), use of numerous chloroplastic thioredoxins recovered activity completely, suggesting that thioredoxins could reduce SEX4 in vivo. Analysis of peptides from oxidized and reduced SEX4 identified a disulfide linkage between the catalytic cysteine at position 198 (Cys198) and the cysteine at position 130 (Cys130) within the phosphatase domain. The position of these cysteines was structurally analogous to that for known redox-regulated dual-specificity phosphatases, suggesting a common mechanism of reversible oxidation amongst these phosphatases. Mutation of Cys130 renders SEX4 more sensitive to oxidative inactivation and less responsive to reductive reactivation. Together, these results provide the first biochemical evidence for a redox-dependent structural switch that regulates SEX4 activity, which represents the first plant phosphatase known to undergo reversible oxidation via disulfide bond formation like its mammalian counterparts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Glucanos/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico , Cromatografía Liquida , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Ditiotreitol/farmacología , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Cinética , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Fosforilación
8.
Biol Open ; 1(2): 128-39, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23213405

RESUMEN

The promiscuous activity of protein phosphatase one (PP1) is controlled in the cell by associated proteins termed regulatory or targeting subunits. Using biochemical and proteomic approaches we demonstrate that the autosomal recessive nonsyndromic hearing loss gene, taperin (C9orf75), encodes a protein that preferentially docks the alpha isoform of PP1. Taperin associates with PP1 through a classic 'RVxF' motif and suppresses the general phosphatase activity of the enzyme. The steady-state localization of taperin is predominantly nuclear, however we demonstrate here that the protein can shuttle between the nucleus and cytoplasm and that it is found complexed to PP1 in both of these cellular compartments. Although originally identified as a hearing loss gene, Western blot analyses with taperin-specific antibodies revealed that the protein is widely expressed across mammalian tissues as multiple splice variants. Taperin is a recent proteome addition appearing during the vertebrate lineage with the PP1 binding site embedded within the most conserved region of the protein. Taperin also shares an ancestral relationship with the cytosolic actin binding protein phostensin, another PP1 interacting partner. Quantitative Stable Isotope Labeling by Amino acids in Culture (SILAC)-based mass spectrometry was employed to uncover additional taperin binding partners, and revealed an interaction with the DNA damage response proteins Ku70, Ku80, PARP and topoisomerases I and IIα. Consistent with this, we demonstrate the active recruitment of taperin to sites of DNA damage. This makes taperin a new addition to the family of PP1 targeting subunits involved in the DNA damage repair pathway.

9.
Front Plant Sci ; 3: 114, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876250

RESUMEN

Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period.

10.
PLoS One ; 7(6): e39510, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761809

RESUMEN

Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material. Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The phosphoprotein phosphatases PP1 and PP2A are paramount for the timely execution of mitotic entry and exit but their interaction partners and substrates are still largely unresolved. High throughput, mass-spectrometry based studies have limited sensitivity for the detection of low-abundance and transient complexes, a typical feature of many protein phosphatase complexes. Moreover, the limited timeframe during which mitosis takes place reduces the likelihood of identifying mitotic phosphatase complexes in asynchronous cells. Hence, numerous mitotic protein phosphatase complexes still await identification. Here we present a strategy to enrich and identify serine/threonine protein phosphatase complexes at the mitotic spindle. We thus identified a nucleolar RNA helicase, Ddx21/Gu, as a novel, direct PP1 interactor. Furthermore, our results place PP1 within the toposome, a Topoisomerase II alpha (TOPOIIα) containing complex with a key role in mitotic chromatin regulation and cell cycle progression, possibly via regulated protein phosphorylation. This study provides a strategy for the identification of further mitotic PP1 partners and the unravelling of PP1 functions during mitosis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Mitosis/fisiología , Proteína Fosfatasa 1/metabolismo , Huso Acromático/metabolismo , Ciclo Celular/fisiología , ARN Helicasas DEAD-box/genética , Humanos , Fosforilación , Proteína Fosfatasa 1/genética , Huso Acromático/genética
11.
Plant J ; 71(2): 263-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22404109

RESUMEN

It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/ß-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.


Asunto(s)
Arabidopsis/enzimología , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Microtúbulos/enzimología , Proteína Fosfatasa 2/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/enzimología , Citosol/enzimología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/aislamiento & purificación , Histona Desacetilasas/genética , Histona Desacetilasas/aislamiento & purificación , Microcistinas/química , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/aislamiento & purificación , Proteínas Recombinantes de Fusión
12.
Biochem J ; 435(1): 73-83, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21222654

RESUMEN

PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteína Fosfatasa 1/química , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Biología Computacional/métodos , Bases de Datos de Proteínas , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estructuras de las Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/aislamiento & purificación , Proteína Fosfatasa 1/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
BMC Evol Biol ; 10: 196, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20576132

RESUMEN

BACKGROUND: Phosphorylated phosphatidylinositol (PtdIns) lipids, produced and modified by PtdIns kinases and phosphatases, are critical to the regulation of diverse cellular functions. The myotubularin PtdIns-phosphate phosphatases have been well characterized in yeast and especially animals, where multiple isoforms, both catalytically active and inactive, occur. Myotubularin mutations bring about disruption of cellular membrane trafficking, and in humans, disease. Previous studies have suggested that myotubularins are widely distributed amongst eukaryotes, but key evolutionary questions concerning the origin of different myotubularin isoforms remain unanswered, and little is known about the function of these proteins in most organisms. RESULTS: We have identified 80 myotubularin homologues amidst the completely sequenced genomes of 30 organisms spanning four eukaryotic supergroups. We have mapped domain architecture, and inferred evolutionary histories. We have documented an expansion in the Amoebozoa of a family of inactive myotubularins with a novel domain architecture, which we dub "IMLRK" (inactive myotubularin/LRR/ROCO/kinase). There is an especially large myotubularin gene family in the pathogen Entamoeba histolytica, the majority of them IMLRK proteins. We have analyzed published patterns of gene expression in this organism which indicate that myotubularins may be important to critical life cycle stage transitions and host infection. CONCLUSIONS: This study presents an overall framework of eukaryotic myotubularin gene evolution. Inactive myotubularin homologues with distinct domain architectures appear to have arisen on three separate occasions in different eukaryotic lineages. The large and distinctive set of myotubularin genes found in an important pathogen species suggest that in this organism myotubularins might present important new targets for basic research and perhaps novel therapeutic strategies.


Asunto(s)
Amebozoos/genética , Evolución Molecular , Filogenia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Secuencia de Aminoácidos , Animales , Expresión Génica , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Fosfatos de Fosfatidilinositol/metabolismo , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
Mol Cell Biol ; 30(6): 1368-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20065038

RESUMEN

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G(2)/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (gamma-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of gamma-H2AX, the dissolution of IR-induced foci, and release from the G(2)/M checkpoint in vivo.


Asunto(s)
Dominio Catalítico , Proteína Quinasa Activada por ADN/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Extractos Celulares , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona/metabolismo , Ensayo Cometa , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fase G2/efectos de la radiación , Silenciador del Gen/efectos de la radiación , Células HeLa , Humanos , Mitosis/efectos de la radiación , Modelos Biológicos , Fosforilación/efectos de la radiación , Unión Proteica/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Proteínas Supresoras de Tumor/metabolismo
15.
Trends Plant Sci ; 14(9): 505-11, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19720555

RESUMEN

PII in prokaryotic organisms is a crucial integrator of cellular carbon, nitrogen and energy levels. In higher plants, however, its role remains significantly less clear. Previous findings suggest that PII-N-acetylglutamate kinase (NAGK) complex formation controls l-arginine biosynthesis, whereas other work implicates PII in regulating chloroplastic NO2(-) uptake. Together, these findings indicate that PII has evolved from a central metabolic role in prokaryotes towards a more specialized role in eukaryotes. Furthermore, recent genomic and bioinformatic findings reveal tissue-specific expression of PII in higher plants, with transcriptional expression patterns suggestive of a link between PII and storage protein production during seed development. This review focuses on the unique structural, biochemical and biological aspects of PII in higher plants.


Asunto(s)
Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Secuencia Conservada , Especificidad de Órganos , Proteínas PII Reguladoras del Nitrógeno/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Células Vegetales , Proteínas de Plantas/química , Plantas/enzimología
16.
Biochem J ; 417(2): 401-9, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19099538

RESUMEN

Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core catalytic domain, phosphatases evolved by a series of gene duplication events and by adopting the use of regulatory subunits and/or fusion with novel functional modules or domains. Recent analyses also suggest that the serine/threonine specific enzymes are more ancient than the PTPs (protein tyrosine phosphatases). It is likely that the latter played a key role at the onset of metazoan evolution in conjunction with the tremendous expansion of tyrosine kinases and PTPs at this point. In the present review, we discuss the evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphatase) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism. We will also highlight examples of convergent evolution and several phosphatases which are unique to plants.


Asunto(s)
Evolución Molecular , Fosfoproteínas Fosfatasas/genética , Plantas/genética , Animales , Activación Enzimática , Humanos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/metabolismo , Plantas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
17.
BMC Plant Biol ; 8: 120, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19038037

RESUMEN

BACKGROUND: Starch accumulation and degradation in chloroplasts is accomplished by a suite of over 30 enzymes. Recent work has emphasized the importance of multi-protein complexes amongst the metabolic enzymes, and the action of associated non-enzymatic regulatory proteins. Arabidopsis At5g39790 encodes a protein of unknown function whose sequence was previously demonstrated to contain a putative carbohydrate-binding domain. RESULTS: We here show that At5g39790 is chloroplast-localized, and binds starch, with a preference for amylose. The protein persists in starch binding under conditions of pH, redox and Mg(+2) concentrations characteristic of both the day and night chloroplast cycles. Bioinformatic analysis demonstrates a diurnal pattern of gene expression, with an accumulation of transcript during the light cycle and decline during the dark cycle. A corresponding diurnal pattern of change in protein levels in leaves is also observed. Sequence analysis shows that At5g39790 has a strongly-predicted coiled-coil domain. Similar analysis of the set of starch metabolic enzymes shows that several have strong to moderate coiled-coil potential. Gene expression analysis shows strongly correlated patterns of co-expression between At5g39790 and several starch metabolic enzymes. CONCLUSION: We propose that At5g39790 is a regulatory scaffold protein, persistently binding the starch granule, where it is positioned to interact by its coiled-coil domain with several potential starch metabolic enzyme binding-partners.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Alineación de Secuencia , Especificidad por Sustrato , Factores de Tiempo
18.
BMC Biochem ; 9: 28, 2008 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19000314

RESUMEN

BACKGROUND: Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. RESULTS: We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIalpha, several nuclear helicases, NUP153 and the TRRAP complex. CONCLUSION: This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteína Fosfatasa 1/aislamiento & purificación , Secuencias de Aminoácidos , Animales , Sitios de Unión , Glucógeno/aislamiento & purificación , Células HeLa , Humanos , Microcistinas/química , Microcistinas/metabolismo , Músculo Esquelético/metabolismo , Proteína Fosfatasa 1/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Conejos , Sefarosa/química
19.
Plant Physiol ; 146(2): 351-67, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18156295

RESUMEN

In addition to the major serine/threonine-specific phosphoprotein phosphatase, Mg(2+)-dependent phosphoprotein phosphatase, and protein tyrosine phosphatase families, there are novel protein phosphatases, including enzymes with aspartic acid-based catalysis and subfamilies of protein tyrosine phosphatases, whose evolutionary history and representation in plants is poorly characterized. We have searched the protein data sets encoded by the well-finished nuclear genomes of the higher plants Arabidopsis (Arabidopsis thaliana) and Oryza sativa, and the latest draft data sets from the tree Populus trichocarpa and the green algae Chlamydomonas reinhardtii and Ostreococcus tauri, for homologs to several classes of novel protein phosphatases. The Arabidopsis proteins, in combination with previously published data, provide a complete inventory of known types of protein phosphatases in this organism. Phylogenetic analysis of these proteins reveals a pattern of evolution where a diverse set of protein phosphatases was present early in the history of eukaryotes, and the division of plant and animal evolution resulted in two distinct sets of protein phosphatases. The green algae occupy an intermediate position, and show similarity to both plants and animals, depending on the protein. Of specific interest are the lack of cell division cycle (CDC) phosphatases CDC25 and CDC14, and the seeming adaptation of CDC14 as a protein interaction domain in higher plants. In addition, there is a dramatic increase in proteins containing RNA polymerase C-terminal domain phosphatase-like catalytic domains in the higher plants. Expression analysis of Arabidopsis phosphatase genes differentially amplified in plants (specifically the C-terminal domain phosphatase-like phosphatases) shows patterns of tissue-specific expression with a statistically significant number of correlated genes encoding putative signal transduction proteins.


Asunto(s)
Chlorophyta/genética , Evolución Molecular , Genoma Humano , Genoma de Planta , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Chlorophyta/enzimología , Análisis por Conglomerados , Regulación de la Expresión Génica , Humanos , Plantas/enzimología , Plantas/genética
20.
J Biol Chem ; 282(49): 35733-40, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17913711

RESUMEN

PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Complejos Multiproteicos/química , Proteínas PII Reguladoras del Nitrógeno/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/biosíntesis , Arginina/química , Sitios de Unión/fisiología , Cristalografía por Rayos X , Cinética , Magnesio/química , Magnesio/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...