Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Hum Gene Ther ; 33(11-12): 579-597, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435735

RESUMEN

Dravet syndrome (DS) is a developmental and epileptic encephalopathy caused by monoallelic loss-of-function variants in the SCN1A gene. SCN1A encodes for the alpha subunit of the voltage-gated type I sodium channel (NaV1.1), the primary voltage-gated sodium channel responsible for generation of action potentials in GABAergic inhibitory interneurons. In these studies, we tested the efficacy of an adeno-associated virus serotype 9 (AAV9) SCN1A gene regulation therapy, AAV9-REGABA-eTFSCN1A, designed to target transgene expression to GABAergic inhibitory neurons and reduce off-target expression within excitatory cells, in the Scn1a+/- mouse model of DS. Biodistribution and preliminary safety were evaluated in nonhuman primates (NHPs). AAV9-REGABA-eTFSCN1A was engineered to upregulate SCN1A expression levels within GABAergic inhibitory interneurons to correct the underlying haploinsufficiency and circuit dysfunction. A single bilateral intracerebroventricular (ICV) injection of AAV9-REGABA-eTFSCN1A in Scn1a+/- postnatal day 1 mice led to increased SCN1A mRNA transcripts, specifically within GABAergic inhibitory interneurons, and NaV1.1 protein levels in the brain. This was associated with a significant decrease in the occurrence of spontaneous and hyperthermia-induced seizures, and prolonged survival for over a year. In NHPs, delivery of AAV9-REGABA-eTFSCN1A by unilateral ICV injection led to widespread vector biodistribution and transgene expression throughout the brain, including key structures involved in epilepsy and cognitive behaviors, such as hippocampus and cortex. AAV9-REGABA-eTFSCN1A was well tolerated, with no adverse events during administration, no detectable changes in clinical observations, no adverse findings in histopathology, and no dorsal root ganglion-related toxicity. Our results support the clinical development of AAV9-REGABA-eTFSCN1A (ETX101) as an effective and targeted disease-modifying approach to SCN1A+ DS.


Asunto(s)
Epilepsias Mioclónicas , Canal de Sodio Activado por Voltaje NAV1.1 , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/terapia , Síndromes Epilépticos , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Primates/metabolismo , Convulsiones/genética , Convulsiones/terapia , Espasmos Infantiles , Distribución Tisular , Ácido gamma-Aminobutírico/genética
2.
BMC Cancer ; 20(1): 612, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605647

RESUMEN

BACKGROUND: The clonoSEQ® Assay (Adaptive Biotechnologies Corporation, Seattle, USA) identifies and tracks unique disease-associated immunoglobulin (Ig) sequences by next-generation sequencing of IgH, IgK, and IgL rearrangements and IgH-BCL1/2 translocations in malignant B cells. Here, we describe studies to validate the analytical performance of the assay using patient samples and cell lines. METHODS: Sensitivity and specificity were established by defining the limit of detection (LoD), limit of quantitation (LoQ) and limit of blank (LoB) in genomic DNA (gDNA) from 66 patients with multiple myeloma (MM), acute lymphoblastic leukemia (ALL), or chronic lymphocytic leukemia (CLL), and three cell lines. Healthy donor gDNA was used as a diluent to contrive samples with specific DNA masses and malignant-cell frequencies. Precision was validated using a range of samples contrived from patient gDNA, healthy donor gDNA, and 9 cell lines to generate measurable residual disease (MRD) frequencies spanning clinically relevant thresholds. Linearity was determined using samples contrived from cell line gDNA spiked into healthy gDNA to generate 11 MRD frequencies for each DNA input, then confirmed using clinical samples. Quantitation accuracy was assessed by (1) comparing clonoSEQ and multiparametric flow cytometry (mpFC) measurements of ALL and MM cell lines diluted in healthy mononuclear cells, and (2) analyzing precision study data for bias between clonoSEQ MRD results in diluted gDNA and those expected from mpFC based on original, undiluted samples. Repeatability of nucleotide base calls was assessed via the assay's ability to recover malignant clonotype sequences across several replicates, process features, and MRD levels. RESULTS: LoD and LoQ were estimated at 1.903 cells and 2.390 malignant cells, respectively. LoB was zero in healthy donor gDNA. Precision ranged from 18% CV (coefficient of variation) at higher DNA inputs to 68% CV near the LoD. Variance component analysis showed MRD results were robust, with expected laboratory process variations contributing ≤3% CV. Linearity and accuracy were demonstrated for each disease across orders of magnitude of clonal frequencies. Nucleotide sequence error rates were extremely low. CONCLUSIONS: These studies validate the analytical performance of the clonoSEQ Assay and demonstrate its potential as a highly sensitive diagnostic tool for selected lymphoid malignancies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Leucemia Linfocítica Crónica de Células B/diagnóstico , Mieloma Múltiple/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Juego de Reactivos para Diagnóstico , Médula Ósea/patología , Ciclina D1/genética , Reordenamiento Génico , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Límite de Detección , Mieloma Múltiple/sangre , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Translocación Genética
3.
Blood ; 132(23): 2456-2464, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30249784

RESUMEN

The introduction of novel agents has led to major improvements in clinical outcomes for patients with multiple myeloma. To shorten evaluation times for new treatments, health agencies are currently examining minimal residual disease (MRD) as a surrogate end point in clinical trials. We assessed the prognostic value of MRD, measured during maintenance therapy by next-generation sequencing (NGS). MRD negativity was defined as the absence of tumor plasma cell within 1 000 000 bone marrow cells (<10-6). Data were analyzed from a recent clinical trial that evaluated the role of transplantation in newly diagnosed myeloma patients treated with lenalidomide, bortezomib, and dexamethasone (RVD). MRD negativity was achieved at least once during maintenance in 127 patients (25%). At the start of maintenance therapy, MRD was a strong prognostic factor for both progression-free survival (adjusted hazard ratio, 0.22; 95% confidence interval, 0.15-0.34; P < .001) and overall survival (adjusted hazard ratio, 0.24; 95% confidence interval, 0.11-0.54; P = .001). Patients who were MRD negative had a higher probability of prolonged progression-free survival than patients with detectable residual disease, regardless of treatment group (RVD vs transplant), cytogenetic risk profile, or International Staging System disease stage at diagnosis. These results were similar after completion of maintenance therapy. Our findings confirm the value of MRD status, as determined by NGS, as a prognostic biomarker in multiple myeloma, and suggest that this approach could be used to adapt treatment strategies in future clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Secuenciación de Nucleótidos de Alto Rendimiento , Mieloma Múltiple/metabolismo , Anciano , Médula Ósea/metabolismo , Médula Ósea/patología , Bortezomib/administración & dosificación , Dexametasona/administración & dosificación , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lenalidomida/administración & dosificación , Quimioterapia de Mantención , Masculino , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Neoplasia Residual , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Tasa de Supervivencia
6.
Nature ; 543(7647): 723-727, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28329770

RESUMEN

Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. However, the personalized identification and validation of neoantigens remains a major challenge. Here we discover neoantigens in human mantle-cell lymphomas by using an integrated genomic and proteomic strategy that interrogates tumour antigen peptides presented by major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically characterize MHC ligands from 17 patients. Remarkably, all discovered neoantigenic peptides were exclusively derived from the lymphoma immunoglobulin heavy- or light-chain variable regions. Although we identified MHC presentation of private polymorphic germline alleles, no mutated peptides were recovered from non-immunoglobulin somatically mutated genes. Somatic mutations within the immunoglobulin variable region were almost exclusively presented by MHC class II. We isolated circulating CD4+ T cells specific for immunoglobulin-derived neoantigens and found these cells could mediate killing of autologous lymphoma cells. These results demonstrate that an integrative approach combining MHC isolation, peptide identification, and exome sequencing is an effective platform to uncover tumour neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Región Variable de Inmunoglobulina/inmunología , Linfoma de Células del Manto/inmunología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Linfocitos T CD4-Positivos/inmunología , Citotoxicidad Inmunológica , Análisis Mutacional de ADN , Epítopos de Linfocito T/inmunología , Exoma/genética , Genómica , Antígenos HLA-D/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Inmunoterapia/tendencias , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/terapia , Mutación , Proteómica
7.
Arthritis Rheumatol ; 69(4): 774-784, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28002888

RESUMEN

OBJECTIVE: Ankylosing spondylitis (AS), a chronic inflammatory disorder, has a notable association with HLA-B27. One hypothesis suggests that a common antigen that binds to HLA-B27 is important for AS disease pathogenesis. This study was undertaken to determine sequences and motifs that are shared among HLA-B27-positive AS patients, using T cell repertoire next-generation sequencing. METHODS: To identify motifs enriched among B27-positive AS patients, we performed T cell receptor ß (TCRß) repertoire sequencing on samples from 191 B27-positive AS patients, 43 B27-negative AS patients, and 227 controls, and we obtained >77 million TCRß clonotype sequences. First, we assessed whether any of 50 previously published sequences were enriched in B27-positive AS patients. We then used training and test cohorts to identify discovered motifs that were enriched in B27-positive AS patients versus controls. RESULTS: Six previously published and 11 discovered motifs were enriched in the B27-positive AS samples as compared to controls. After combining motifs related by sequence, we identified a total of 15 independent motifs. Both the full set of 15 motifs and a set of 6 published motifs were enriched in the B27-positive AS patients as compared to B27-positive healthy individuals (P = 0.049 and P = 0.001, respectively). Using an independent cohort, we validated that at least some of these motifs were associated with AS, and not simply with B27-positive status. CONCLUSION: We identified TCRß motifs that are enriched in B27-positive AS patients as compared to B27-positive healthy controls. This suggests that a common antigen, presented by HLA-B27 and detected by CD8+ T cells, may be associated with AS disease pathogenesis.


Asunto(s)
Antígeno HLA-B27/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Espondilitis Anquilosante/inmunología , Adolescente , Adulto , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia , Adulto Joven
8.
PLoS One ; 10(10): e0141561, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26509579

RESUMEN

Monitoring antigen-specific T cells is critical for the study of immune responses and development of biomarkers and immunotherapeutics. We developed a novel multiplex assay that combines conventional immune monitoring techniques and immune receptor repertoire sequencing to enable identification of T cells specific to large numbers of antigens simultaneously. We multiplexed 30 different antigens and identified 427 antigen-specific clonotypes from 5 individuals with frequencies as low as 1 per million T cells. The clonotypes identified were validated several ways including repeatability, concordance with published clonotypes, and high correlation with ELISPOT. Applying this technology we have shown that the vast majority of shared antigen-specific clonotypes identified in different individuals display the same specificity. We also showed that shared antigen-specific clonotypes are simpler sequences and are present at higher frequencies compared to non-shared clonotypes specific to the same antigen. In conclusion this technology enables sensitive and quantitative monitoring of T cells specific for hundreds or thousands of antigens simultaneously allowing the study of T cell responses with an unprecedented resolution and scale.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos/genética , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Evolución Clonal/genética , Evolución Clonal/inmunología , Ensayo de Immunospot Ligado a Enzimas/métodos , Ensayo de Immunospot Ligado a Enzimas/normas , Humanos , Reproducibilidad de los Resultados
9.
Lancet Oncol ; 16(5): 541-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25842160

RESUMEN

BACKGROUND: Diffuse large-B-cell lymphoma is curable, but when treatment fails, outcome is poor. Although imaging can help to identify patients at risk of treatment failure, they are often imprecise, and radiation exposure is a potential health risk. We aimed to assess whether circulating tumour DNA encoding the clonal immunoglobulin gene sequence could be detected in the serum of patients with diffuse large-B-cell lymphoma and used to predict clinical disease recurrence after frontline treatment. METHODS: We used next-generation DNA sequencing to retrospectively analyse cell-free circulating tumour DNA in patients assigned to one of three treatment protocols between May 8, 1993, and June 6, 2013. Eligible patients had diffuse large-B-cell lymphoma, no evidence of indolent lymphoma, and were previously untreated. We obtained serial serum samples and concurrent CT scans at specified times during most treatment cycles and up to 5 years of follow-up. VDJ gene segments of the rearranged immunoglobulin receptor genes were amplified and sequenced from pretreatment specimens and serum circulating tumour DNA encoding the VDJ rearrangements was quantitated. FINDINGS: Tumour clonotypes were identified in pretreatment specimens from 126 patients who were followed up for a median of 11 years (IQR 6·8-14·2). Interim monitoring of circulating tumour DNA at the end of two treatment cycles in 108 patients showed a 5-year time to progression of 41·7% (95% CI 22·2-60·1) in patients with detectable circulating tumour DNA and 80·2% (69·6-87·3) in those without detectable circulating tumour DNA (p<0·0001). Detectable interim circulating tumour DNA had a positive predictive value of 62·5% (95% CI 40·6-81·2) and a negative predictive value of 79·8% (69·6-87·8). Surveillance monitoring of circulating tumour DNA was done in 107 patients who achieved complete remission. A Cox proportional hazards model showed that the hazard ratio for clinical disease progression was 228 (95% CI 51-1022) for patients who developed detectable circulating tumour DNA during surveillance compared with patients with undetectable circulating tumour DNA (p<0·0001). Surveillance circulating tumour DNA had a positive predictive value of 88·2% (95% CI 63·6-98·5) and a negative predictive value of 97·8% (92·2-99·7) and identified risk of recurrence at a median of 3·5 months (range 0-200) before evidence of clinical disease. INTERPRETATION: Surveillance circulating tumour DNA identifies patients at risk of recurrence before clinical evidence of disease in most patients and results in a reduced disease burden at relapse. Interim circulating tumour DNA is a promising biomarker to identify patients at high risk of treatment failure. FUNDING: National Cancer Institute and Adaptive Biotechnologies.


Asunto(s)
ADN de Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Niño , ADN de Neoplasias/aislamiento & purificación , Femenino , Humanos , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Células Neoplásicas Circulantes , Tomografía Computarizada por Rayos X
10.
Biol Blood Marrow Transplant ; 20(9): 1307-13, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24769317

RESUMEN

Minimal residual disease (MRD) quantification is an important predictor of outcome after treatment for acute lymphoblastic leukemia (ALL). Bone marrow ALL burden ≥ 10(-4) after induction predicts subsequent relapse. Likewise, MRD ≥ 10(-4) in bone marrow before initiation of conditioning for allogeneic (allo) hematopoietic cell transplantation (HCT) predicts transplantation failure. Current methods for MRD quantification in ALL are not sufficiently sensitive for use with peripheral blood specimens and have not been broadly implemented in the management of adults with ALL. Consensus-primed immunoglobulin (Ig), T cell receptor (TCR) amplification and high-throughput sequencing (HTS) permit use of a standardized algorithm for all patients and can detect leukemia at 10(-6) or lower. We applied the LymphoSIGHT HTS platform (Sequenta Inc., South San Francisco, CA) to quantification of MRD in 237 samples from 29 adult B cell ALL patients before and after allo-HCT. Using primers for the IGH-VDJ, IGH-DJ, IGK, TCRB, TCRD, and TCRG loci, MRD could be quantified in 93% of patients. Leukemia-associated clonotypes at these loci were identified in 52%, 28%, 10%, 35%, 28%, and 41% of patients, respectively. MRD ≥ 10(-4) before HCT conditioning predicted post-HCT relapse (hazard ratio [HR], 7.7; 95% confidence interval [CI], 2.0 to 30; P = .003). In post-HCT blood samples, MRD ≥10(-6) had 100% positive predictive value for relapse with median lead time of 89 days (HR, 14; 95% CI, 4.7 to 44, P < .0001). The use of HTS-based MRD quantification in adults with ALL offers a standardized approach with sufficient sensitivity to quantify leukemia MRD in peripheral blood. Use of this approach may identify a window for clinical intervention before overt relapse.


Asunto(s)
Genes Codificadores de los Receptores de Linfocitos T/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Inmunoglobulinas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Adolescente , Adulto , Anciano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Pronóstico , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
11.
Blood ; 123(20): 3073-9, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24646471

RESUMEN

We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD(-) by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD(+). When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10(-3) 27 months, MRD 10(-3) to 10(-5) 48 months, and MRD <10(-5) 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD(+). In complete response patients, the TTP remained significantly longer for MRD(-) compared with MRD(+) patients (131 vs 35 months; P = .0009).


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea/metabolismo , Médula Ósea/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/patología , Neoplasia Residual , Pronóstico
12.
PLoS One ; 8(9): e74231, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069285

RESUMEN

In this study, we combined a novel sequencing method, which can identify individual clonotypes based on their unique T cell receptor (TCR) rearrangement, with existing immune assays to characterize antigen-specific T cell responses. We validated this approach using three types of assays routinely used to measure antigen-specific responses: pentamers which enable identification of T cells bearing specific TCRs, activation marker expression following antigen stimulation and antigen-induced proliferation to identify cytomegalovirus (CMV) specific clonotypes. In one individual, 8 clonotypes were identified using a pentamer reagent derived from the CMV pp65 protein. The same 8 clonotypes were also identified following sequencing of cells that upregulated an activation marker following incubation with an identical peptide derived from pp65. These 8 and an additional 8 clonotypes were identified using a more sensitive CFSE-based proliferation assay. We found clear sequence homology among some of the clonotypes identified, and the CDR3 region in one clonotype was identical to a previously published pp65-specific clonotype sequence. Many of these CMV-specific clonotypes were present at frequencies below 10(-5) which are undetectable using standard flow-cytometric methods. These studies suggest that an immune response is comprised of a diverse set of clones, many of which are present at very low frequencies. Thus, the combination of immune assays and sequencing depicts the richness and diversity of an immune response at a level that is not possible using standard immune assays alone. The methods articulated in this work provide an enhanced understanding of T cell-mediated immune responses at the clonal level.


Asunto(s)
Epítopos de Linfocito T/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunoensayo/métodos , Subgrupos de Linfocitos T/inmunología , Secuencia de Aminoácidos , Antígenos/inmunología , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/metabolismo , Citomegalovirus/inmunología , Citometría de Flujo/métodos , Humanos , Inmunofenotipificación , Activación de Linfocitos/inmunología , Fosfoproteínas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Proteínas de la Matriz Viral/inmunología
13.
Blood ; 120(26): 5173-80, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23074282

RESUMEN

The persistence of minimal residual disease (MRD) during therapy is the strongest adverse prognostic factor in acute lymphoblastic leukemia (ALL). We developed a high-throughput sequencing method that universally amplifies antigen-receptor gene segments and identifies all clonal gene rearrangements (ie, leukemia-specific sequences) at diagnosis, allowing monitoring of disease progression and clonal evolution during therapy. In the present study, the assay specifically detected 1 leukemic cell among greater than 1 million leukocytes in spike-in experiments. We compared this method with the gold-standard MRD assays multiparameter flow cytometry and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) using diagnostic and follow-up samples from 106 patients with ALL. Sequencing detected MRD in all 28 samples shown to be positive by flow cytometry and in 35 of the 36 shown to be positive by ASO-PCR and revealed MRD in 10 and 3 additional samples that were negative by flow cytometry and ASO-PCR, respectively. We conclude that this new method allows monitoring of treatment response in ALL and other lymphoid malignancies with great sensitivity and precision. The www.clinicaltrials.gov identifier number for the Total XV study is NCT00137111.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Secuencia de Bases , Niño , Evolución Clonal/genética , Evolución Clonal/fisiología , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Modelos Biológicos , Técnicas de Diagnóstico Molecular/métodos , Datos de Secuencia Molecular , Neoplasia Residual , Reacción en Cadena de la Polimerasa/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Sensibilidad y Especificidad
14.
Proc Natl Acad Sci U S A ; 107(28): 12587-92, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616066

RESUMEN

A unique microarray-based method for determining the extent of DNA methylation has been developed. It relies on a selective enrichment of the regions to be assayed by target amplification by capture and ligation (mTACL). The assay is quantitatively accurate, relatively precise, and lends itself to high-throughput determination using nanogram amounts of DNA. The measurements using mTACLs are highly reproducible and in excellent agreement with those obtained by sequencing (r = 0.94). In the present work, the methylation status of >145,000 CpGs from 5,472 promoters in 221 samples was measured. The methylation levels of nearby CpGs are correlated, but the correlation falls off dramatically over several hundred base pairs. In some instances, nearby CpGs have very different levels of methylation. Comparison of normal and tumor samples indicates that in tumors, the promoter regions of genes involved in differentiation and signaling are preferentially hypermethylated, whereas those of housekeeping genes remain hypomethylated. mTACL is a platform for profiling the state of methylation of a large number of CpG in many samples in a cost-effective fashion, and is capable of scaling to much larger numbers of CpGs than those collected here.


Asunto(s)
Metilación de ADN , Diferenciación Celular/genética , ADN/genética , Fosfatos de Dinucleósidos , Genoma , Humanos , Metilación
15.
Nature ; 466(7308): 869-73, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20668451

RESUMEN

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Humanos , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/genética , MAP Quinasa Quinasa 4/genética , Masculino , Neoplasias/enzimología , Neoplasias/patología , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/genética , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/genética , Proteínas Quinasas/genética , Receptores Acoplados a Proteínas G/genética
16.
BMC Bioinformatics ; 11: 305, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20525369

RESUMEN

BACKGROUND: Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. RESULTS: Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. CONCLUSIONS: Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.


Asunto(s)
Neoplasias de la Mama/genética , Línea Celular Tumoral , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Antígenos de Neoplasias/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Islas de CpG , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-vav/genética , Factor Trefoil-1 , Proteínas Supresoras de Tumor/genética
17.
Proc Natl Acad Sci U S A ; 106(16): 6712-7, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19342489

RESUMEN

Although genomewide association studies have successfully identified associations of many common single-nucleotide polymorphisms (SNPs) with common diseases, the SNPs implicated so far account for only a small proportion of the genetic variability of tested diseases. It has been suggested that common diseases may often be caused by rare alleles missed by genomewide association studies. To identify these rare alleles we need high-throughput, high-accuracy resequencing technologies. Although array-based genotyping has allowed genomewide association studies of common SNPs in tens of thousands of samples, array-based resequencing has been limited for 2 main reasons: the lack of a fully multiplexed pipeline for high-throughput sample processing, and failure to achieve sufficient performance. We have recently solved both of these problems and created a fully multiplexed high-throughput pipeline that results in high-quality data. The pipeline consists of target amplification from genomic DNA, followed by allele enrichment to generate pools of purified variant (or nonvariant) DNA and ends with interrogation of purified DNA on resequencing arrays. We have used this pipeline to resequence approximately 5 Mb of DNA (on 3 arrays) corresponding to the exons of 1,500 genes in >473 samples; in total >2,350 Mb were sequenced. In the context of this large-scale study we obtained a false positive rate of approximately 1 in 500,000 bp and a false negative rate of approximately 10%.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN/métodos , Alelos , Automatización , Disparidad de Par Base , Genoma Humano/genética , Humanos , Mutación/genética , Curva ROC , Análisis de Secuencia de ADN/normas
18.
BMC Med Genomics ; 2: 8, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19228381

RESUMEN

BACKGROUND: A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (approximately 40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. RESULTS: Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. CONCLUSION: MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

19.
Hum Mutat ; 29(3): 441-50, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18186519

RESUMEN

Mismatch repair detection (MRD) was used to screen 93 matched tumor-normal sample pairs and 22 cell lines for somatic mutations in 30 cancer relevant genes. Using a starting amount of only 150 ng of genomic DNA, we screened 102 kb of sequence for somatic mutations in colon and breast cancer. A total of 152 somatic mutations were discovered, encompassing previously reported mutations, such as BRAF V600E and KRAS G12S, G12V, and G13D, as well as novel mutations, including some in genes in which somatic mutations have not previously been reported, such as MAP2K1 and MAP2K2. The distribution of mutations ranged widely within and across tumor types. The functional significance of many of these mutations is not understood, with patterns of selection only evident in KRAS and BRAF in colon cancer. These results present a novel approach to high-throughput mutation screening using small amounts of starting material and reveal a mutation spectrum across 30 genes in a large cohort of breast and colorectal cancers.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Análisis Mutacional de ADN/métodos , Mutación , Secuencia de Bases , Línea Celular Tumoral , ADN de Neoplasias/genética , Femenino , Humanos , Masculino
20.
Genome Biol ; 8(11): R246, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18028543

RESUMEN

We have developed a new protocol for using molecular inversion probes to accurately and specifically measure allele copy number. The new protocol provides for significant improvements, including the reduction of input DNA (from 2 mug) by more than 25-fold (to 75 ng total genomic DNA), higher overall precision resulting in one order of magnitude lower false positive rate, and greater dynamic range with accurate absolute copy number up to 60 copies.


Asunto(s)
Alelos , Inversión Cromosómica , Sondas Moleculares , Línea Celular Tumoral , Aberraciones Cromosómicas , Reacciones Falso Positivas , Humanos , Pérdida de Heterocigocidad , Reacción en Cadena de la Polimerasa , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...