Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37858336

RESUMEN

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Asunto(s)
Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Inflamación , Humanos , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo
2.
ACS Omega ; 6(11): 7454-7468, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33778258

RESUMEN

Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.

4.
bioRxiv ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33299990

RESUMEN

SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.

5.
bioRxiv ; 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33236014

RESUMEN

Hyperinflammation and lymphopenia provoked by SARS-CoV-2-activated macrophages contribute to the high mortality of Coronavirus Disease 2019 (COVID-19) patients. Thus, defining host pathways aberrantly activated in patient macrophages is critical for developing effective therapeutics. We discovered that G9a, a histone methyltransferase that is overexpressed in COVID-19 patients with high viral load, activates translation of specific genes that induce hyperinflammation and impairment of T cell function or lymphopenia. This noncanonical, pro-translation activity of G9a contrasts with its canonical epigenetic function. In endotoxin-tolerant (ET) macrophages that mimic conditions which render patients with pre-existing chronic inflammatory diseases vulnerable to severe symptoms, our chemoproteomic approach with a biotinylated inhibitor of G9a identified multiple G9a-associated translation regulatory pathways that were upregulated by SARS-CoV-2 infection. Further, quantitative translatome analysis of ET macrophages treated progressively with the G9a inhibitor profiled G9a-translated proteins that unite the networks associated with viral replication and the SARS-CoV-2-induced host response in severe patients. Accordingly, inhibition of G9a-associated pathways produced multifaceted, systematic effects, namely, restoration of T cell function, mitigation of hyperinflammation, and suppression of viral replication. Importantly, as a host-directed mechanism, this G9a-targeted, combined therapeutics is refractory to emerging antiviral-resistant mutants of SARS-CoV-2, or any virus, that hijacks host responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...