Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 234: 116572, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429398

RESUMEN

Statins are the most widely used pharmacological agents for reducing blood cholesterol levels and treating atherosclerotic cardiovascular diseases. Most of the statins' derivatives have been limited by water solubility, bioavailability, and oral absorption, which has led to adverse effects on several organs, especially at high doses. As an approach to reducing statin intolerance, achieving a stable formulation with improved efficacy and bioavailability at low doses has been suggested. Nanotechnology-based formulations may provide a therapeutic benefit over traditional formulations in terms of potency and biosafety. Nanocarriers can provide tailored delivery platforms for statins, thereby enhancing the localized biological effects and lowering the risk of undesired side effects while boosting statin's therapeutic index. Furthermore, tailored nanoparticles can deliver the active cargo to the desired site, which culminates in reducing off-targeting and toxicity. Nanomedicine could also provide opportunities for therapeutic methods by personalized medicine. This review delves into the existing data on the potential improvement of statin therapy using nano-formulations.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Nanomedicina , Nanotecnología
2.
Drug Dev Ind Pharm ; 44(1): 13-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28832225

RESUMEN

In the present study, we developed aptamer (Apt) conjugated mesoporous silica nanoparticles (MSNs) for specific delivery of epirubicin (EPI) to breast cancer cells. MSNs were synthesized and functionalized with 3-mercaptopropyltrimethoxysilane (3-MPTMS), followed by MUC1 aptamer conjugation through disulfide bonds. The nanoparticles were analyzed by transmission electron microscopy (TEM), particle size analyzer, zeta potential, elemental analysis (CHNS), aptamer conjugation efficiency, drug loading efficiency, and drug release profile. Cell uptake and in vitro cytotoxicity of different formulations were performed. The results of MSNs characterization confirmed spherical nanoparticles with thiol functional groups. Particle size of obtained nanoparticles was 163 nm in deionized water. After conjugation of MUC1 aptamer and EPI loading (MSN-MUC1-EPI), particle size increased to 258 nm. The aptamer conjugation to MSNs with disulfide bonds were confirmed using gel retardation assay. Cellular uptake studies revealed better cell uptake of MSN-MUC1-EPI compared to MSN-EPI. Moreover, cytotoxicity study results in MCF7 cell lines showed improved cytotoxicity of MSN-MUC1-EPI in comparison with MSN-EPI or EPI at the same concentration of drug. These results exhibited that MSN-MUC1-EPI has the potential for targeted drug delivery into MUC1 positive breast cancer cells to improve drug efficacy and alleviate side effects.


Asunto(s)
Neoplasias de la Mama/química , Sistemas de Liberación de Medicamentos/métodos , Epirrubicina/farmacocinética , Nanopartículas/química , Silanos/farmacocinética , Dióxido de Silicio/química , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Liberación de Fármacos , Epirrubicina/química , Humanos , Células MCF-7 , Compuestos de Organosilicio , Tamaño de la Partícula , Silanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA