Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 16(4): 777-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24615241

RESUMEN

Wavelength and temperature-dependent apparent quantum yields (AQYs) were determined for the photochemical production of hydrogen peroxide using seawater obtained from coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and at several sites along the East Coast of the United States. For all samples, AQYs decreased exponentially with increasing wavelength at 25 °C, ranging from 4.6 × 10(-4) to 10.4 × 10(-4) at 290 nm to 0.17 × 10(-4) to 0.97 × 10(-4) at 400 nm. AQYs for different seawater samples were remarkably similar irrespective of expected differences in the composition and concentrations of metals and dissolved organic matter (DOM) and in prior light exposure histories; wavelength-dependent AQYs for individual seawater samples differed by less than a factor of two relative to respective mean AQYs. Temperature-dependent AQYs increased between 0 and 35 °C on average by a factor of 1.8 per 10 °C, consistent with a thermal reaction (e.g., superoxide dismutation) controlling H2O2 photochemical production rates in seawater. Taken together, these results suggest that the observed poleward decrease in H2O2 photochemical production rates is mainly due to corresponding poleward decreases in irradiance and temperature and not spatial variations in the composition and concentrations of DOM or metals. Hydrogen peroxide photoproduction AQYs and production rates were not constant and not independent of the photon exposure as has been implicitly assumed in many published studies. Therefore, care should be taken when comparing and interpreting published H2O2 AQY or photochemical production rate results. Modeled depth-integrated H2O2 photochemical production rates were in excellent agreement with measured rates obtained from in situ free-floating drifter experiments conducted during a Gulf of Maine cruise, with differences (ca. 10%) well within measurement and modeling uncertainties. Results from this study provide a comprehensive data set of wavelength and temperature-dependent AQYs to model and remotely sense hydrogen peroxide photochemical production rates globally.


Asunto(s)
Peróxido de Hidrógeno/análisis , Modelos Químicos , Procesos Fotoquímicos , Agua de Mar/química , Temperatura , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química
2.
Environ Sci Process Impacts ; 16(4): 757-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24513701

RESUMEN

In this study it was observed that, during long-term irradiations (>1 day) of natural waters, the methods for measuring hydroxyl radical (˙OH) formation rates based upon sequentially determined cumulative concentrations of photoproducts from probes significantly underestimate actual ˙OH formation rates. Performing a correction using the photodegradation rates of the probe products improves the ˙OH estimation for short term irradiations (<1 day), but not long term irradiations. Only the 'instantaneous' formation rates, which were obtained by adding probes to aliquots at each time point and irradiating these sub-samples for a short time (≤2 h), were found appropriate for accurately estimating ˙OH photochemical formation rates during long-term laboratory irradiation experiments. Our results also showed that in iron- and dissolved organic matter (DOM)-rich water samples, ˙OH appears to be mainly produced from the Fenton reaction initially, but subsequently from other sources possibly from DOM photoreactions. Pathways of ˙OH formation in long-term irradiations in relation to H2O2 and iron concentrations are discussed.


Asunto(s)
Agua Dulce/química , Radical Hidroxilo/química , Modelos Químicos , Procesos Fotoquímicos , Peróxido de Hidrógeno , Hierro/química , Rayos Ultravioleta
3.
Anal Chem ; 85(14): 6661-6, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23738747

RESUMEN

Recent studies suggest that cyanate (OCN(-)) is a potentially important source of reduced nitrogen (N) available to support the growth of aquatic microbes and, thus, may play a role in aquatic N cycling. However, aquatic OCN(-) distributions have not been previously described because of the lack of a suitable assay for measuring OCN(-) concentrations in natural waters. Previous methods were designed to quantify OCN(-) in aqueous samples with much higher reduced N concentrations (micromolar levels) than those likely to be found in natural waters (nanomolar levels). We have developed a method to quantify OCN(-) in dilute, saline environments. In the method described here, OCN(-) in aqueous solution reacts with 2-aminobenzoic acid to produce a highly fluorescent derivative, 2,4-quinazolinedione, which is then quantified using high performance liquid chromatography. Derivatization conditions were optimized to simultaneously minimize the reagent blank and maximize 2,4-quinazolinedione formation (>90% reaction yield) in estuarine and seawater matrices. A limit of detection (LOD) of 0.4 nM was achieved with only minor matrix effects. We applied this method to measure OCN(-) concentrations in estuarine and seawater samples from the Chesapeake Bay and coastal waters from the mid-Atlantic region. OCN(-) concentrations ranged from 0.9 to 41 nM. We determined that OCN(-) concentrations were stable in 0.2 µm filtered seawater samples stored at -80 °C for up to nine months.


Asunto(s)
Cianatos/análisis , Estuarios , Nanotecnología/métodos , Agua de Mar/química , Cromatografía Líquida de Alta Presión/métodos , Mid-Atlantic Region , Espectrometría de Fluorescencia/métodos
4.
Environ Sci Technol ; 42(9): 3271-6, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18522105

RESUMEN

Aqueous solutions of humic substances (HSs) and pure monomeric aromatics were irradiated to investigate the chemical controls upon carbon monoxide (CO) photoproduction from dissolved organic matter (DOM). HSs were isolated from lakes, rivers, marsh, and ocean. Inclusion of humic, fulvic, hydrophobic organic, and hydrophilic organic acid fractions from these environments provided samples diverse in source and isolation protocol. In spite of these major differences, HS absorption coefficients (a) and photoreactivities (a bleaching and CO production) were strongly dependent upon HS aromaticity (r2 > 0.90; n = 11), implying aromatic moieties are the principal chromophores and photoreactants within HSs, and by extension, DOM. Carbonyl carbon and CO photoproduction were not correlated, implying that carbonyl moieties are not quantitatively important in CO photoproduction. CO photoproduction efficiency of aqueous solutions of monomeric aromatic compounds that are common constituents of organic matter varied with the nature of ring substituents. Specifically, electron donating groups increased, while electron withdrawing groups decreased CO photoproductivity, supporting our conclusion that carbonyl substituents are not quantitatively important in CO photoproduction. Significantly, aromatic CO photoproduction efficiency spanned 3 orders of magnitude, indicating that variations in the CO apparent quantum yields of natural DOM may be related to variations in aromatic DOM substituent group chemistry.


Asunto(s)
Monóxido de Carbono/química , Carbono/química , Monóxido de Carbono/análisis , Química Orgánica/métodos , Electrones , Monitoreo del Ambiente/métodos , Sustancias Húmicas , Cetonas/química , Luz , Modelos Químicos , Compuestos Orgánicos/química , Fotoquímica/métodos , Teoría Cuántica , Rayos Ultravioleta , Agua/química , Contaminantes Químicos del Agua/química
6.
Appl Environ Microbiol ; 71(10): 6267-75, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16204548

RESUMEN

This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-microm-pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2O2 decayed in the dark, and after 43 h, nearly all irradiated HSs enhanced BCP (average 39% increase relative to nonirradiated controls, standard error = 7.5%, n = 16). UV exposure of HSs also increased bacterial respiration (by approximately 18%, standard error = 5%, n = 4), but less than BCP, resulting in an average increase in BGE of 32% (standard error = 10%, n = 4). Photoenhancement of BCP did not correlate to HS bulk properties (i.e., elemental and chemical composition). However, when the photoenhancement of BCP was normalized to absorbance, several trends with HS origin and extraction method emerged. Absorbance-normalized hydrophilic acid and humic acid samples showed greater enhancement of BCP than hydrophobic acid and fulvic acid samples. Furthermore, absorbance-normalized autochthonous samples showed approximately 10-fold greater enhancement of BCP than allochthonous-dominated samples, indicating that the former are more efficient photoproducers of biological substrates.


Asunto(s)
Bacterias/crecimiento & desarrollo , Agua Dulce/microbiología , Sustancias Húmicas/efectos de la radiación , Consumo de Oxígeno , Luz Solar , Rayos Ultravioleta , Bacterias/metabolismo , Isótopos de Carbono/metabolismo , Oscuridad , Espectroscopía de Resonancia Magnética
7.
Environ Sci Technol ; 37(20): 4702-8, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14594381

RESUMEN

Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.


Asunto(s)
Modelos Teóricos , Contaminantes del Agua , Absorción , Concentración de Iones de Hidrógeno , Hierro/química , Compuestos Orgánicos , Fotoquímica , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...