Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(23): e2200088, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35607290

RESUMEN

Reaching population immunity against COVID-19 is proving difficult even in countries with high vaccination levels. Thus, it is critical to identify limits of control and effective measures against future outbreaks. The effects of nonpharmaceutical interventions (NPIs) and vaccination strategies are analyzed with a detailed community-specific agent-based model (ABM). The authors demonstrate that the threshold for population immunity is not a unique number, but depends on the vaccination strategy. Prioritizing highly interactive people diminishes the risk for an infection wave, while prioritizing the elderly minimizes fatalities when vaccinations are low. Control over COVID-19 outbreaks requires adaptive combination of NPIs and targeted vaccination, exemplified for Germany for January-September 2021. Bimodality emerges from the heterogeneity and stochasticity of community-specific human-human interactions and infection networks, which can render the effects of limited NPIs uncertain. The authors' simulation platform can process and analyze dynamic COVID-19 epidemiological situations in diverse communities worldwide to predict pathways to population immunity even with limited vaccination.


Asunto(s)
COVID-19 , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Simulación por Computador , Brotes de Enfermedades/prevención & control , Alemania/epidemiología , Humanos , Vacunación
2.
Pharmaceutics ; 13(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34452080

RESUMEN

Cell penetrating peptides (CPPs) are molecules capable of passing through biological membranes. This capacity has been used to deliver impermeable molecules into cells, such as drugs and DNA probes, among others. However, the internalization of these peptides lacks specificity: CPPs internalize indistinctly on different cell types. Two major approaches have been described to address this problem: (i) targeting, in which a receptor-recognizing sequence is added to a CPP, and (ii) activation, where a non-active form of the CPP is activated once it interacts with cell target components. These strategies result in multifunctional peptides (i.e., penetrate and target recognition) that increase the CPP's length, the cost of synthesis and the likelihood to be degraded or become antigenic. In this work we describe the use of machine-learning methods to design short selective CPP; the reduction in size is accomplished by embedding two or more activities within a single CPP domain, hence we referred to these as moonlighting CPPs. We provide experimental evidence that these designed moonlighting peptides penetrate selectively in targeted cells and discuss areas of opportunity to improve in the design of these peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...