RESUMEN
The aging ovary in mammals leads to the reduced production of sex hormones and a deterioration in follicle quality. The interstitial gland originates from the hypertrophy of the theca cells of atretic follicles and represents an accumulative structure of the ovary that may contribute to its aging. Here, reproductive and mature rabbit ovaries are used to determine whether the interstitial gland plays a crucial role in ovarian aging. We demonstrate that, in the mature ovary, interstitial gland cells accumulate lipid droplets and show ultrastructural characteristics of lipophagy. Furthermore, they undergo modifications and present a foamy appearance, do not express the pan-leukocyte CD-45 marker, and express CYP11A1. These cells are the first to present an increase in lipofuscin accumulation. In foamy cells, the expression of p21 remains low, PCNA expression is maintained at mature ages, and their nuclei do not show positivity for H2AX. The interstitial gland shows a significant increase in lipofuscin accumulation compared with the ovaries of younger rabbits, but lipofuscin accumulation remains constant at mature ages. Surprisingly, no accumulation of cells with DNA damage is evident, and an increase in proliferative cells is observed at the age of 36 months. We suggest that the interstitial gland initially uses lipophagy to maintain steroidogenic homeostasis and prevent cellular senescence.
Asunto(s)
Envejecimiento , Senescencia Celular , Lipofuscina , Ovario , Animales , Femenino , Conejos , Envejecimiento/metabolismo , Ovario/metabolismo , Ovario/citología , Lipofuscina/metabolismo , Chinchilla , Células Tecales/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/citología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Daño del ADNRESUMEN
A bacterial strain of Pseudomonas aeruginosa B0406 catalogued as pathogen opportunistic was capable to grow with waste cooking oil as only carbon source and produce a biosurfactant. Stability to pH (from 2 to 12), salinity (% NaCl from 0 to 20%) and temperature (from -20 °C up to 120 °C), of biosurfactants was evaluated using a response surface methodology. Biosurfactants reduced surface tension from 50 to 29 ± 1.0 mN/m. Pseudomonas aeruginosa B0406 showed a high biosurfactant yield 4.17 g/L ± 0.38. Biosurfactants stability applying a response surface methodology was observed with combining effect of pH, salinity and temperature. The three factors combined do not affect surface tension of biosurfactants produced by Pseudomonas aeruginosa B0406. Therefore, this biosurfactants are of interest for medical, cosmetic even environmental applications.