Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Neural Syst ; 34(2): 2350068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38073546

RESUMEN

In this study, a few-shot transfer learning approach was introduced to decode movement intention from electroencephalographic (EEG) signals, allowing to recognize new tasks with minimal adaptation. To this end, a dataset of EEG signals recorded during the preparation of complex sub-movements was created from a publicly available data collection. The dataset was divided into two parts: the source domain dataset (including 5 classes) and the support (target domain) dataset, (including 2 classes) with no overlap between the two datasets in terms of classes. The proposed methodology consists in projecting EEG signals into the space-frequency-time domain, in processing such projections (rearranged in channels × frequency frames) by means of a custom EEG-based deep neural network (denoted as EEGframeNET5), and then adapting the system to recognize new tasks through a few-shot transfer learning approach. The proposed method achieved an average accuracy of 72.45 ± 4.19% in the 5-way classification of samples from the source domain dataset, outperforming comparable studies in the literature. In the second phase of the study, a few-shot transfer learning approach was proposed to adapt the neural system and make it able to recognize new tasks in the support dataset. The results demonstrated the system's ability to adapt and recognize new tasks with an average accuracy of 80 ± 0.12% in discriminating hand opening/closing preparation and outperforming reported results in the literature. This study suggests the effectiveness of EEG in capturing information related to the motor preparation of complex movements, potentially paving the way for BCI systems based on motion planning decoding. The proposed methodology could be straightforwardly extended to advanced EEG signal processing in other scenarios, such as motor imagery or neural disorder classification.


Asunto(s)
Interfaces Cerebro-Computador , Intención , Electroencefalografía/métodos , Redes Neurales de la Computación , Aprendizaje Automático , Imaginación , Algoritmos
2.
Int J Neural Syst ; 34(2): 2402001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38117159
4.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772726

RESUMEN

Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.


Asunto(s)
Dinámicas no Lineales , Electricidad Estática , Capacidad Eléctrica
5.
Clin EEG Neurosci ; 54(1): 51-60, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889152

RESUMEN

An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients converted to Alzheimer's Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as "T0" (MCI state) or "T1" (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68-99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure detected which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) were more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Electroencefalografía/métodos , Inteligencia Artificial , Disfunción Cognitiva/diagnóstico , Redes Neurales de la Computación
6.
Artículo en Inglés | MEDLINE | ID: mdl-36497808

RESUMEN

Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Descanso
7.
Int J Neural Syst ; 32(12): 2250054, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240199

RESUMEN

This paper proposes a generative model and transfer learning powered system for classification of Scanning Electron Microscope (SEM) images of defective nanofibers (D-NF) and nondefective nanofibers (ND-NF) produced by electrospinning (ES) process. Specifically, a conditional-Generative Adversarial Network (c-GAN) is developed to generate synthetic D-NF/ND-NF SEM images. A transfer learning-oriented strategy is also proposed. First, a Convolutional Neural Network (CNN) is pre-trained on real images. The transfer-learned CNN is trained on synthetic SEM images and validated on real ones, reporting accuracy rate up to 95.31%. The achieved encouraging results endorse the use of the proposed generative model in industrial applications as it could reduce the number of needed laboratory ES experiments that are costly and time consuming.


Asunto(s)
Nanofibras , Redes Neurales de la Computación , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador/métodos
9.
Entropy (Basel) ; 24(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35052128

RESUMEN

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.

10.
Neurocomputing (Amst) ; 481: 202-215, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35079203

RESUMEN

The Covid-19 pandemic is the defining global health crisis of our time. Chest X-Rays (CXR) have been an important imaging modality for assisting in the diagnosis and management of hospitalised Covid-19 patients. However, their interpretation is time intensive for radiologists. Accurate computer aided systems can facilitate early diagnosis of Covid-19 and effective triaging. In this paper, we propose a fuzzy logic based deep learning (DL) approach to differentiate between CXR images of patients with Covid-19 pneumonia and with interstitial pneumonias not related to Covid-19. The developed model here, referred to as CovNNet, is used to extract some relevant features from CXR images, combined with fuzzy images generated by a fuzzy edge detection algorithm. Experimental results show that using a combination of CXR and fuzzy features, within a deep learning approach by developing a deep network inputed to a Multilayer Perceptron (MLP), results in a higher classification performance (accuracy rate up to 81%), compared to benchmark deep learning approaches. The approach has been validated through additional datasets which are continously generated due to the spread of the virus and would help triage patients in acute settings. A permutation analysis is carried out, and a simple occlusion methodology for explaining decisions is also proposed. The proposed pipeline can be easily embedded into present clinical decision support systems.

11.
Int J Neural Syst ; 31(9): 2150038, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34376121

RESUMEN

In this paper, a hybrid-domain deep learning (DL)-based neural system is proposed to decode hand movement preparation phases from electroencephalographic (EEG) recordings. The system exploits information extracted from the temporal-domain and time-frequency-domain, as part of a hybrid strategy, to discriminate the temporal windows (i.e. EEG epochs) preceding hand sub-movements (open/close) and the resting state. To this end, for each EEG epoch, the associated cortical source signals in the motor cortex and the corresponding time-frequency (TF) maps are estimated via beamforming and Continuous Wavelet Transform (CWT), respectively. Two Convolutional Neural Networks (CNNs) are designed: specifically, the first CNN is trained over a dataset of temporal (T) data (i.e. EEG sources), and is referred to as T-CNN; the second CNN is trained over a dataset of TF data (i.e. TF-maps of EEG sources), and is referred to as TF-CNN. Two sets of features denoted as T-features and TF-features, extracted from T-CNN and TF-CNN, respectively, are concatenated in a single features vector (denoted as TTF-features vector) which is used as input to a standard multi-layer perceptron for classification purposes. Experimental results show a significant performance improvement of our proposed hybrid-domain DL approach as compared to temporal-only and time-frequency-only-based benchmark approaches, achieving an average accuracy of [Formula: see text]%.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Algoritmos , Electroencefalografía , Aprendizaje Automático , Redes Neurales de la Computación
12.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372474

RESUMEN

In this study, an accurate analytic semi-linear elliptic differential model for a circular membrane MEMS device, which considers the effect of the fringing field on the membrane curvature recovering, is presented. A novel algebraic condition, related to the membrane electromechanical properties, able to govern the uniqueness of the solution, is also demonstrated. Numerical results for the membrane profile, obtained by using the Shooting techniques, the Keller-Box scheme, and the III/IV Stage Lobatto IIIa formulas, have been carried out, and their performances have been compared. The convergence conditions, and the possible presence of ghost solutions, have been evaluated and discussed. Finally, a practical criterion for choosing the membrane material as a function of the MEMS specific application is presented.


Asunto(s)
Sistemas Microelectromecánicos , Modelos Lineales
13.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477526

RESUMEN

Transcranial magnetic stimulation (TMS) excites neurons in the cortex, and neural activity can be simultaneously recorded using electroencephalography (EEG). However, TMS-evoked EEG potentials (TEPs) do not only reflect transcranial neural stimulation as they can be contaminated by artifacts. Over the last two decades, significant developments in EEG amplifiers, TMS-compatible technology, customized hardware and open source software have enabled researchers to develop approaches which can substantially reduce TMS-induced artifacts. In TMS-EEG experiments, various physiological and external occurrences have been identified and attempts have been made to minimize or remove them using online techniques. Despite these advances, technological issues and methodological constraints prevent straightforward recordings of early TEPs components. To the best of our knowledge, there is no review on both TMS-EEG artifacts and EEG technologies in the literature to-date. Our survey aims to provide an overview of research studies in this field over the last 40 years. We review TMS-EEG artifacts, their sources and their waveforms and present the state-of-the-art in EEG technologies and front-end characteristics. We also propose a synchronization toolbox for TMS-EEG laboratories. We then review subject preparation frameworks and online artifacts reduction maneuvers for improving data acquisition and conclude by outlining open challenges and future research directions in the field.


Asunto(s)
Artefactos , Estimulación Magnética Transcraneal , Electroencefalografía , Potenciales Evocados , Tecnología
14.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35009675

RESUMEN

Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.


Asunto(s)
Electroencefalografía , Convulsiones , Estudios de Cohortes , Humanos , Aprendizaje Automático , Descanso
16.
Membranes (Basel) ; 10(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233398

RESUMEN

The evolution of engineering applications is increasingly shifting towards the embedded nature, resulting in low-cost solutions, micro/nano dimensional and actuators being exploited as fundamental components to connect the physical nature of information with the abstract one, which is represented in the logical form in a machine. In this context, the scientific community has gained interest in modeling membrane Micro-Electro-Mechanical-Systems (MEMS), leading to a wide diffusion on an industrial level owing to their ease of modeling and realization. Physically, once the external voltage is applied, an electrostatic field, orthogonal to the tangent line of the membrane, is established inside the device, producing an electrostatic pressure that acts on the membrane, deforming it. Evidently, the greater the amplitude of the electrostatic field is, the greater the curvature of the membrane. Thus, it seems natural to consider the amplitude of the electrostatic field proportional to the curvature of the membrane. Starting with this principle, the authors are actively involved in developing a second-order semi-linear elliptic model in 1D and 2D geometries, obtaining important results regarding the existence, uniqueness and stability of solutions as well as evaluating the particular operating conditions of use of membrane MEMS devices. In this context, the idea of providing a survey matures to discussing the similarities and differences between the analytical and numerical results in detail, thereby supporting the choice of certain membrane MEMS devices according to the industrial application. Finally, some original results about the stability of the membrane in 2D geometry are presented and discussed.

18.
Med Biol Eng Comput ; 57(9): 1961-1983, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31301007

RESUMEN

In this paper, we propose a network analysis-based approach to help experts in their analyses of subjects with mild cognitive impairment (hereafter, MCI) and Alzheimer's disease (hereafter, AD) and to investigate the evolution of these subjects over time. The inputs of our approach are the electroencephalograms (hereafter, EEGs) of the patients to analyze, performed at a certain time and, again, 3 months later. Given an EEG of a subject, our approach constructs a network with nodes that represent the electrodes and edges that denote connections between electrodes. Then, it applies several network-based techniques allowing the investigation of subjects with MCI and AD and the analysis of their evolution over time. (i) A connection coefficient, supporting experts to distinguish patients with MCI from patients with AD; (ii) A conversion coefficient, supporting experts to verify if a subject with MCI is converting to AD; (iii) Some network motifs, i.e., network patterns very frequent in one kind of patient and absent, or very rare, in the other. Patients with AD, just by the very nature of their condition, cannot be forced to stay motionless while undergoing examinations for a long time. EEG is a non-invasive examination that can be easily done on them. Since AD and MCI, if prodromal to AD, are associated with a loss of cortical connections, the adoption of network analysis appears suitable to investigate the effects of the progression of the disease on EEG. This paper confirms the suitability of this idea Graphical Abstract Ability of our proposed model to distinguish a control subject from a patient with MCI and a patient with AD. Blue edges represent strong connections among the corresponding brain areas; red edges denote middle connections, whereas green edges indicate weak connections. In the control subject (at the top), most connections are blue. In the patient with MCI (at the middle), most connections are red and green. In the patient with AD (at the bottom), most connections are either absent or green. .


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Anciano , Anciano de 80 o más Años , Encéfalo/fisiopatología , Análisis por Conglomerados , Toma de Decisiones Asistida por Computador , Femenino , Humanos , Masculino , Modelos Neurológicos , Sensibilidad y Especificidad
19.
Int J Med Inform ; 121: 19-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30545486

RESUMEN

Creutzfeldt-Jacob disease (CJD) is a rapidly progressive, uniformly fatal transmissible spongiform encephalopathy. Sporadic CJD (sCJD) is the most common form of CJD. Electroencephalography (EEG) is one of the main methods to perform clinical diagnosis of CJD, mainly because of periodic sharp wave complexes (PSWCs). In this paper, we propose a network analysis based approach to characterizing PSWCs in EEGs of patients with sCJD. Our approach associates a network with each EEG at disposal and defines a new numerical coefficient and some network motifs, which characterize the presence of PSWCs in an EEG tracing. The new coefficient, called connection coefficient, and the detected network motifs are capable of characterizing the EEG tracing segments with PSWCs. Furthermore, network motifs are able to detect what are the most active and/or connected brain areas in the tracing segments with PSWCs. The results obtained show that, analogously to what happens for other neurological diseases, network analysis can be successfully exploited to investigate sCJD.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Electroencefalografía/métodos , Humanos
20.
Entropy (Basel) ; 20(2)2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33265170

RESUMEN

The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...