Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Phys Eng ; 12(2): 111-116, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35433523

RESUMEN

Background: The dose values obtained from procedures of diagnostic radiology are relatively low. To accurately and precisely measure the dose values in this dose range, it is necessary to know the characteristics of dosimeters. Objective: The aim of this study was to evaluate several thermoluminescent characteristics of GR-200, TLD-700H and TLD-100 for low dose measurement. Material and Methods: In this experimental study, linearity, repeatability, dose rate and photon energy dependence of different TLD materials were investigated in a 0.05-10 mGy range dose. It is noteworthy that the data obtained from TLD-100 were considered as reference and the data obtained from two other types of TLDs were compared with them. Results: For all three types of TLD materials, there are linear relations between absorbed dose values to TLDs and their responses. TLD-100 and TLD-700H have very low sensitivity than GR-200. For GR-200 and TLD-100, the coefficients of variation values (%) are 3.00% and 2.01%, respectively, that these values are within the tolerance limit (<7.5%). However, this value for TLD-700H is 10.85% which it is more than the reported tolerance limit. Furthermore, remarkable effects of dose rate and photon energy dependence on the responses of GR-200 are not observed in a 0.5-4 mGy dose range; nevertheless, remarkable effects of dose rate and photon energy dependence on the responses of TLD-100 and TLD-700H are found in this dose range. Conclusion: The evaluated thermoluminescent characteristics for GR-200 are better than two other types of TLDs (TLD-100 and TLD-700H) for low dose values.

2.
Oral Radiol ; 37(1): 80-85, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32065334

RESUMEN

OBJECTIVE: Although radiation exposure associated with dental radiography is relatively low, patient exposure must be kept practically low. Therefore, it is necessary for each country to establish its own diagnostic reference levels (DRLs) suitable for its equipment and practice. In the present study, dose-width product (DWP) values for panoramic dental radiography were measured and a local DRL was established. METHODS: Five panoramic devices from five radiology clinics of Kashan, Iran were selected to measure the DWP values of panoramic dental radiography. To investigate the DWP values, the parameters of each patient's exposure (e.g., tube voltage, tube current, and exposure time) at these five radiology clinics were extracted. Then, the dose value received by each patient was measured based on a CT pencil chamber. Finally, the overall median DWP values for the patients with small, medium, and large sizes were obtained, and these values were considered as the local DRLs for panoramic dental radiography. RESULTS: A total of 99 adult patients were included in the present study. The findings demonstrated that the median and third-quartile DWP values for these five radiology clinics ranged from 42.3 to 94.3 and 49.7 to 142.8 mGy mm, respectively. The local DRL values, which were established as the overall median DWP values, were 43.4, 52.0, and 80.3 mGy  mm for the adults with small, medium, and large sizes, respectively. CONCLUSION: The local DRL proposed in this study for the adult with standard/medium size was lower than those proposed by other reports and seemed acceptable for panoramic radiography in Kashan, Iran.


Asunto(s)
Niveles de Referencia para Diagnóstico , Radiometría , Adulto , Humanos , Irán , Dosis de Radiación , Radiografía Panorámica
3.
J Med Signals Sens ; 10(4): 286-294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33575201

RESUMEN

BACKGROUND: Various factors effecting deposited energy and dose enhancement ratio (DER) in the simplified model of cell caused by the interaction of a cluster of gold nanoparticles (GNPs) with electron beams were assessed, and the results were compared with other sources through Geant4 Monte Carlo simulation toolkit. METHOD: The effect of added GNPs on the DNA strand breaks level, irradiated to electron, proton, and alpha beams, is assessed. RESULTS: Presence of GNPs in the cell makes DER value more pronounced for low-energy photons rather than electron beam. Moreover, the results of DER values did not show any significant increase in absorbed dose in the presence of GNP for proton and alpha beam. Moreover, the results of DNA break with GNPs for proton and alpha beam were negligible. It is demonstrated that as the sizes of the GNPs increase, the DER is enlarged until a certain size for 40 keV photons, while there is no striking change for 50 keV electron beam when the size of the GNPs changes. The results indicate that although energy deposited in the cell for electron beam is more than low-energy photon, DER values are low compared to photon. CONCLUSION: Larger GNPs do not show any preference over smaller ones when irradiated through electron beams. It is proved that GNPs do not significantly increase single-strand breaks (SSBs) and double-strand breaks during electron irradiation, while there exists a direct relationship between SSB and energy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31713500

RESUMEN

AIM: In this study, we aimed to determine possible mitigation of radiationinduced toxicities in the duodenum, jejunum and colon using post-exposure treatment with resveratrol and alpha-lipoic acid. BACKGROUND: After the bone marrow, gastrointestinal system toxicity is the second critical cause of death following whole-body exposure to radiation. Its side effects reduce the quality of life of patients who have undergone radiotherapy. Resveratrol has an antioxidant effect and stimulates DNA damage responses (DDRs). Alpha-lipoic acid neutralizes free radicals via the recycling of ascorbic acid and alpha-tocopherol. OBJECTIVE: This study is a pilot investigation of the mitigation of enteritis using resveratrol and alpha-lipoic acid following histopathological study. METHODS: 60 male mice were randomly assigned to six groups; control, resveratrol treatment, alpha-lipoic acid treatment, whole-body irradiation, irradiation plus resveratrol, and irradiation plus alpha-lipoic acid. The mice were irradiated with a single dose of 7 Gy from a cobalt-60 gamma-ray source. Treatment with resveratrol or alpha-lipoic acid started 24 h after irradiation and continued for 4 weeks. All mice were sacrificed after 30 days for histopathological evaluation of radiation-induced toxicities in the duodenum, jejunum and colon. RESULTS AND DISCUSSION: Exposure to radiation caused mild to severe damages to vessels, goblet cells and villous. It also led to significant infiltration of macrophages and leukocytes, especially in the colon. Both resveratrol and alpha-lipoic acid were able to mitigate morphological changes. However, they could not mitigate vascular injury. CONCLUSION: Resveratrol and alpha-lipoic acid could mitigate radiation-induced injuries in the small and large intestine. A comparison between these agents showed that resveratrol may be a more effective mitigator compared to alpha-lipoic acid.


Asunto(s)
Traumatismos Experimentales por Radiación/tratamiento farmacológico , Protectores contra Radiación/uso terapéutico , Resveratrol/uso terapéutico , Ácido Tióctico/uso terapéutico , Animales , Colon/efectos de los fármacos , Colon/patología , Colon/efectos de la radiación , Duodeno/efectos de los fármacos , Duodeno/patología , Duodeno/efectos de la radiación , Rayos gamma/efectos adversos , Yeyuno/efectos de los fármacos , Yeyuno/patología , Yeyuno/efectos de la radiación , Masculino , Ratones , Traumatismos Experimentales por Radiación/patología , Irradiación Corporal Total/efectos adversos
5.
Medicina (Kaunas) ; 55(7)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252673

RESUMEN

Background: Radiation-induced heart injury can lead to increased risk of heart failure, attack, and ischemia. Some studies proposed IL-4 and IL-13 as two important cytokines that are involved in late effects of ionizing radiation. On the other hand, these cytokines may, through upregulation of Duox1 and Duox2, induce chronic oxidative stress, inflammation, and fibrosis. In this study, we evaluated the upregulation of Duox1 and Duox2 pathways in hearts following chest irradiation in rats and then detected possible attenuation of them by melatonin. Materials and Methods: Twenty male Wistar rats were divided into four groups: (1) control; (2) melatonin treated (100 mg/kg); (3) radiation (15 Gy gamma rays); (4) melatonin treated before irradiation. All rats were sacrificed after 10 weeks and their heart tissues collected for real-time PCR (RT-PCR), ELISA detection of IL-4 and IL-13, as well as histopathological evaluation of macrophages and lymphocytes infiltration. Results: Results showed an upregulation of IL-4, IL4ra1, Duox1, and Duox2. The biggest changes were for IL4ra1 and Duox1. Treatment with melatonin before irradiation could attenuate the upregulation of all genes. Melatonin also caused a reduction in IL-4 as well as reverse infiltration of inflammatory cells. Conclusion: Duox1 and Duox2 may be involved in the late effects of radiation-induced heart injury. Also, via attenuation of these genes, melatonin can offer protection against the toxic effects of radiation on the heart.


Asunto(s)
Oxidasas Duales/efectos de la radiación , Melatonina/farmacología , Regulación hacia Arriba/efectos de la radiación , Análisis de Varianza , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Cardiopatías Congénitas , Masculino , Melatonina/uso terapéutico , Factores Protectores , Traumatismos por Radiación , Ratas , Ratas Wistar , Regulación hacia Arriba/fisiología
6.
Cell J ; 21(3): 236-242, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31210428

RESUMEN

OBJECTIVE: The Lung is one of the most radiosensitive organs of the body. The infiltration of macrophages and lymphocytes into the lung is mediated via the stimulation of T-helper 2 cytokines such as IL-4 and IL-13, which play a key role in the development of fibrosis. It is likely that these cytokines induce chronic oxidative damage and inflammation through the upregulation of Duox1 and Duox2, which can increase the risk of late effects of ionizing radiation (IR) such as fibrosis and carcinogenesis. In the present study, we aimed to evaluate the possible increase of IL-4 and IL-13 levels, as well as their downstream genes such as IL4ra1, IL13ra2, Duox1, and Duox2. MATERIALS AND METHODS: In this experimental animal study, male rats were divided into 4 groups: i. Control, ii. Melatonintreated, iii. Radiation, and iv. Melatonin (100 mg/kg) plus radiation. Rats were irradiated with 15 Gy 60Co gamma rays and then sacrificed after 67 days. The expressions of IL4ra1, IL13ra2, Duox1, and Duox2, as well as the levels of IL-4 and IL-13, were evaluated. The histopathological changes such as the infiltration of inflammatory cells, edema, and fibrosis were also examined. Moreover, the protective effect of melatonin on these parameters was also determined. RESULTS: Results showed a 1.5-fold increase in the level of IL-4, a 5-fold increase in the expression of IL4ra1, and a 3-fold increase in the expressions of Duox1 and Duox2. However, results showed no change for IL-13 and no detectable expression of IL13ra2. This was associated with increased infiltration of macrophages, lymphocytes, and mast cells. Melatonin treatment before irradiation completely reversed these changes. CONCLUSION: This study has shown the upregulation of IL-4-IL4ra1-Duox2 signaling pathway following lung irradiation. It is possible that melatonin protects against IR-induced lung injury via the downregulation of this pathway and attenuation of inflammatory cells infiltration.

7.
Int J Mol Cell Med ; 7(4): 226-233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31516882

RESUMEN

Computed tomography (CT) is one of the most important diagnostic X-ray procedures which plays an important role in increasing the patient dose values. The purpose of this clinical study was to evaluate the efficacy of vitamins E and C in lowering down the level of DNA double strand break (DSB) caused by CT scan. Sixty patients for abdomen/pelvic enhanced CT scan were randomly assigned to placebo (control), vitamin C, and vitamin E groups. The patient blood samples were taken before and immediately after the CT scan. Counting the number of DSB was performed using γ-H2AX method as a sensitive biomarker. Immediately after the CT scan, the mean number of DSBs/cell increased in all three groups of control (131%, P<0.001), vitamin C (103%, P <0.001), and vitamin E (66%, P<0.001) compared to their mean before the CT scan. Furthermore, the results showed that vitamin E decreased the mean number of DSBs/cell by 22% in comparison with the control group (P =0.023), whereas vitamin C had no significant effect on reducing the DSB (<3%, P =0.741). It is concluded that the administration of vitamin E one hour before the CT scan, significantly decreases DSB levels.

8.
J Med Signals Sens ; 7(4): 213-219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204378

RESUMEN

BACKGROUND: The aim of this study was to develop a nucleotide geometrical model of the circular mitochondrial DNA (mt-DNA) structure using Geant4-DNA toolkit to predict the radiation-induced damages such as single-strand breaks (SSB), double-strand breaks (DSB), and some other physical parameters. METHODS: Our model covers the organization of a circular human mt genetic system. The current model includes all 16,659 base pairs of human mt-DNA. This new mt-DNA model has been preliminarily tested in this work by determining SSB and DSB DNA damage yields and site-hit probabilities due to the impact of proton particles. The accuracy of the geometry was determined by three-dimensional visualization in various ring element numbers. The hit locations were determined with respect to a reference coordinate system, and the corresponding base pairs were stored in the ROOT output file. RESULTS: The coordinate determination according to the algorithm was consistent with the expected results. The output results contain the information about the energy transfers in the backbone region of the DNA double helix. The output file was analyzed by root analyzing tools. Estimation of SSBs and DSBs yielded similar results with the increment of incident particle linear energy transfer. In addition, these values seem to be consistent with the corresponding experimental determinations. CONCLUSIONS: This model can be used in numerical simulations of mt-DNA radiation interactions to perform realistic evaluations of DNA-free radical reactions. This work will be extended to supercoiled conformation in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...