Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38407127

RESUMEN

Four yeast isolates collected from flowers from different ecosystems in Brazil, one from fruit of Nothofagus alpina in Argentina, three from flowers of Neltuma chilensis in Chile and one obtained from the proventriculus of a female bumblebee in Canada were demonstred, by analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domains of the large subunit rRNA gene, to represent two novel species of the genus Starmerella. These species are described here as Starmerella gilliamiae f.a, sp. nov. (CBS 16166T; Mycobank MB 851206) and Starmerella monicapupoae f.a., sp. nov. (PYCC 8997T; Mycobank MB 851207). The results of a phylogenomic analysis using 1037 single-copy orthogroups indicated that S. gilliamiae is a member of a subclade that contains Starmerella opuntiae, Starmerella aceti and Starmerella apicola. The results also indicated that S. monicapupoae is phylogenetically related to Starmerella riodocensis. The two isolates of S. monicapupoae were obtained from flowers in Brazil and were probably vectored by insects that visit these substrates. Starmerella gilliamiae has a wide geographical distribution having been isolated in flowers from Brazil and Chile, fruit from Argentina and a bumblebee from Canada.


Asunto(s)
Ecosistema , Saccharomycetales , Animales , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genética , Insectos
2.
Yeast ; 40(11): 511-539, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37921426

RESUMEN

Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.


Asunto(s)
Bosques , Clima Tropical , Animales , Biodiversidad , Ecosistema , Plantas
3.
Front Microbiol ; 14: 1144062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293212

RESUMEN

Microorganisms play an essential role in ecosystem functions. An increasingly used method for conducting functional analyses of a soil microbial community is based on the physiological profile at the community level. This method allows the metabolic capacity of microorganisms to be assessed based on patterns of carbon consumption and derived indices. In the present study, the functional diversity of microbial communities was assessed in soils from seasonally flooded-forest (FOR) and -traditional farming systems (TFS) in Amazonian floodplains flooded with black, clear, and white water. The soils of the Amazon floodplains showed differences in the metabolic activity of their microbial communities, with a general trend in activity level of clear water floodplain > black water floodplain > white water floodplain. The redundancy analysis (RDA) indicated that soil moisture (flood pulse) was the most important environmental parameter in determining the metabolic activity of the soil microbial communities in the black, clear, and white floodplains. In addition, the variance partitioning analysis (VPA) indicated that the microbial metabolic activity of the soil was more influenced by water type (41.72%) than by seasonality (19.55%) and land use type (15.28%). The soil microbiota of the white water floodplain was different from that of the clear water and black water floodplains in terms of metabolic richness, as the white water floodplain was mainly influenced by the low substrate use during the non-flooded period. Taken together, the results show the importance of considering soils under the influence of flood pulses, water types, and land use as environmental factors when recognizing functional diversity and ecosystem functioning in Amazonian floodplains.

4.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992253

RESUMEN

Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide-chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36884373

RESUMEN

Four isolates of Spathaspora species were recovered from rotting wood collected in two Brazilian Amazonian biomes. The isolates produced unconjugated allantoid asci with a single elongated ascospore with curved ends. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent two different novel Spathaspora species, phylogenetically related to Sp. boniae. Two isolates were obtained from rotting wood collected in two different sites of the Amazonian forest in the state of Pará. The name Spathaspora brunopereirae sp. nov. is proposed to accommodate these isolates. The holotype of Spathaspora brunopereirae sp. nov. is CBS 16119T (MycoBank MB846672). The other two isolates were obtained from a region of transition between the Amazonian forest and the Cerrado ecosystem in the state of Tocantins. The name Spathaspora domphillipsii sp. nov. is proposed for this novel species. The holotype of Spathaspora domphillipsii sp. nov. is CBS 14229T (MycoBank MB846697). Both species are able to convert d-xylose into ethanol and xylitol, a trait with biotechnological applications.


Asunto(s)
Saccharomycetales , Xilosa , Ecosistema , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genética , Levaduras/genética , Bosques , Madera , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-35225759

RESUMEN

Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.


Asunto(s)
Basidiomycota , Bromeliaceae/microbiología , Filogenia , Composición de Base , Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN
7.
An Acad Bras Cienc ; 93(suppl 4): e20210598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34852068

RESUMEN

Investigations on the fungal community associated with the digestive tract (DT) of insects have provided insights into the diversity of associated microorganisms and their potential roles in the interaction with their hosts. However, most studies have focused on terrestrial insects, with few studies focusing on aquatic insects in Neotropical regions. We studied fungal taxa associated with the DT of larval stages of the aquatic shredders Phylloicus amazonas, P. elektoros and P. fenestratus in the Brazilian Amazon Forest. Filamentous fungi were isolated, purified and screened for cellulolytic activity. A total of 33 fungal taxa was identified through the combination of classical and molecular taxonomy. The genus Penicillium was the most frequent in DT of Phylloicus spp. (18.75%). The occurrence of fungal taxa among hosts was quite variable, with more than half of the associated fungi being exclusive of each host species. A significant portion of the fungal community associated with each host presented cellulolytic activity (± 50%). It was concluded that the fungal community associated with Phylloicus spp. larvae consist mainly of fungal taxa from food items, which come from riparian vegetation (whose plant species are variable) or are indigenous of the aquatic ecosystems, which is the habitat of these larvae.


Asunto(s)
Micobioma , Ríos , Animales , Dieta , Ecosistema , Insectos
8.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34762580

RESUMEN

Four yeast isolates with an affinity to the genus Wickerhamiella were obtained from beach sand, a marine zoanthid and a tree exudate at different localities in Brazil. Two other isolates with almost identical ITS and D1/D2 sequences of the large subunit rRNA gene were isolated from the small intestine of cattle and a grease trap in Thailand. These isolates represent a novel species phylogenetically related to Wickerhamiella verensis, Wickerhamiella osmotolerans, Wickerhamiella tropicalis, Wickerhamiella sorbophila and Wickerhamiella infanticola. The novel species differs by 15-30 nucleotide differences from these species in the D1/D2 sequences. The name Wickerhamiella martinezcruziae f.a., sp. nov. is proposed. The holotype of Wickerhamiella martinezcruziae sp. nov. is CBS 16104T. The MycoBank number is MB 839328.


Asunto(s)
Filogenia , Saccharomycetales , Animales , Composición de Base , Brasil , Bovinos/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Intestino Delgado/microbiología , Técnicas de Tipificación Micológica , Exudados de Plantas , ARN Ribosómico 16S/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Arena/microbiología , Análisis de Secuencia de ADN , Tailandia , Clima Tropical
9.
Yeast ; 37(12): 625-637, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33161614

RESUMEN

Yeast communities associated with cacti were studied in three ecosystems of Southeast, Central and North Brazil. A total of 473 yeast strains belonging to 72 species were isolated from 190 samples collected. Cactophilic yeast species were prevalent in necrotic tissues, flowers, fruits and insects of cacti collected in Southeast and North Brazil. Pichia cactophila, Candida sonorensis and species of the Sporopachydermia complex were the most prevalent cactophilic species in Southeast and Central regions. Kodamaea nitidulidarum, Candida restingae and Wickerhamiella cacticola were frequently associated with cactus flowers and fruits. The diversity of yeasts associated with the substrates studied was high. Twenty-one novel species were found. One is described here as Kluyveromyces starmeri sp. nov. based on 21 isolates obtained from necrotic tissues, flowers, fruits and associated insects of the columnar cacti Cereus saddianus, Micranthocereus dolichospermaticus and Pilosocereus arrabidae in two different ecosystems in Brazil. Phylogenetic analyses of sequences encoding the gene of the small subunit (SSU) rRNA gene, the internal transcribed spacer, the 5.8S rRNA gene and the D1/D2 domains of the large subunit (LSU) rRNA showed that the species is related to Kluyveromyces dobzhanskii, Kluyveromyces lactis and Kluyveromyces marxianus. Phylogenomic analyses based on 1264 conserved genes shared among the new species and 19 other members of the Saccharomycetaceae confirmed this phylogenetic relationship. The holotype is K. starmeri sp. nov. CBS 16103T (=UFMG-CM-Y3682T ). The Mycobank number is MB 836817.


Asunto(s)
Cactaceae/microbiología , Ecosistema , Kluyveromyces/clasificación , Kluyveromyces/genética , Micobioma/genética , Filogenia , Levaduras/genética , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Variación Genética , Genoma Fúngico , Geografía , Técnicas de Tipificación Micológica , ARN Ribosómico/genética , Levaduras/clasificación
10.
Braz J Microbiol ; 51(3): 1209-1218, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32385836

RESUMEN

Ephemeral microbial communities usually undergo priority effect and result in higher diversity with a few representatives of each species. Community structure of yeasts in bromeliad tanks was compared between two rupestrian savanna (Cerrado) areas in Brazil and to yeasts isolated from water holes in the same areas. Water samples were collected from 60 tanks of bromeliads Bromelia karatas and Encholirium sp. and rock holes at the Karstic Area of Aurora, Tocantins State and 60 tanks of Vriesea minarum (Bromeliaceae) and Paepalanthus bromelioides (Eriocaulaceae) at Serra do Cipó National Park, Minas Gerais State in Brazil. The yeast diversity comprised 90 species from which 60% are basidiomycetous yeasts usually associated with phylloplane, soils, and aquatic habitats. The species Papiliotrema laurentii, Rhodotorula mucilaginosa, Pa. nemorosus, and Pseudozyma hubeiensis were the most frequent species associated with bromeliads. Eighteen yeast species, two ascomycetous and 16 basidiomycetous, were consistently isolated from the substrates in both areas and may represent a core community in bromeliads in rupestrian fields. Singlets occurred in 38 to 69% of samples, and 32 species were isolated only once. Our findings reinforce the ephemeral nature of the yeast communities associated with tank-forming plants in which individual phytotelmata act as patches or aquatic islands prone to rapid colonization-extinction rates receiving inocula from plant and soil debris. Ephemeral rock holes also represent a transitory habitat for yeast species associated with plants and soil.


Asunto(s)
Bromeliaceae/microbiología , Eriocaulaceae/microbiología , Micobioma , Levaduras/aislamiento & purificación , Biodiversidad , Brasil , Ecosistema , Filogenia , Microbiología del Suelo , Levaduras/clasificación , Levaduras/genética
11.
Int J Syst Evol Microbiol ; 70(4): 2677-2681, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32207678

RESUMEN

Six strains of a novel yeast species were isolated from tree bark collected in the Atlantic Forest and the Amazon Rainforest in Brazil. Analyses of the sequences of D1/D2 domains of the large subunit rRNA gene showed that the strains belong to a species in the genus Zygotorulaspora. The species differed by 5.54 % sequence divergence (25 substitutions and five indels out of 542 bp) in the D1/D2 sequences from Zygotorulaspora mrakii, its closest relative. The ITS sequence of the type strain of the novel species differs by 27-69 nucleotide substitutions/indels from the other Zygotorulaspora species. The novel species is able to grow on trehalose, maltose, l-sorbose, inulin and at 37 °C, which are negative in Z. mrakii. The name Zygotorulaspora cariocana sp. nov. is proposed. The holotype of Z. cariocana sp. nov. is CBS 16118T. The MycoBank number is MB 833702.


Asunto(s)
Filogenia , Corteza de la Planta/microbiología , Saccharomycetales/clasificación , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Bosque Lluvioso , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN , Árboles/microbiología
12.
Int J Syst Evol Microbiol ; 69(5): 1504-1508, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30856091

RESUMEN

Twelve strains of a novel yeast species were isolated from rotting wood, mushrooms and fruit samples in Brazil and French Guiana. Analysis of the sequences of the internal transcribed spacer region and the D1/D2 domains of the large subunit rRNA gene showed that the novel species belongs to the Kurtzmaniella clade. The novel species differed from its closest relative, Candida natalensis, by 12 substitutions in the D1/D2 sequences. The novel species could be distinguished from C. natalensis by its inability to assimilate cellobiose and salicin, and growth at 50 % (w/w) glucose. The name Kurtzmaniella hittingeri f.a., sp. nov. is proposed for the novel species. The type strain of K. hittingeri sp. nov. is CBS 13469T (=UFMG CM-Y272T). The MycoBank number is 827183. We also propose the transfer of Candida fragi, Candida quercitrusa and Candida natalensis to the genus Kurtzmaniella as new combinations.


Asunto(s)
Candida/clasificación , Frutas/microbiología , Filogenia , Madera/microbiología , Alcoholes Bencílicos , Brasil , Candida/aislamiento & purificación , Celobiosa , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Guyana Francesa , Glucósidos , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN
13.
Genome Biol Evol ; 10(8): 1939-1955, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982460

RESUMEN

The study of microbe domestication has witnessed major advances that contribute to a better understanding of the emergence of artificially selected phenotypes and set the foundations of their rational improvement for biotechnology. Several features make Saccharomyces cerevisiae an ideal model for such a study, notably the availability of a catalogue of signatures of artificial selection and the extensive knowledge available on its biological processes. Here, we investigate with population and comparative genomics a set of strains used for cachaça fermentation, a Brazilian beverage based on the fermentation of sugar cane juice. We ask if the selective pressures posed by this fermentation have given rise to a domesticated lineage distinct from the ones already known, like wine, beer, bread, and sake yeasts. Our results show that cachaça yeasts derive from wine yeasts that have undergone an additional round of domestication, which we define as secondary domestication. As a consequence, cachaça strains combine features of wine yeasts, such as the presence of genes relevant for wine fermentation and advantageous gene inactivations, with features of beer yeasts like resistance to the effects of inhibitory compounds present in molasses. For other markers like those related to sulfite resistance and biotin metabolism our analyses revealed distributions more complex than previously reported that support the secondary domestication hypothesis. We propose a multilayered microbe domestication model encompassing not only transitions from wild to primarily domesticated populations, as in the case of wine yeasts, but also secondary domestications like those of cachaça yeasts.


Asunto(s)
Saccharomyces cerevisiae/genética , Selección Genética , Acuaporinas/genética , Secuencia de Bases , Fermentación/genética , Genes Fúngicos , Variación Genética , Modelos Biológicos , Filogenia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Fungal Biol ; 122(7): 668-676, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880202

RESUMEN

We investigated the yeast species associated with rotting wood samples obtained from Brazilian ecosystems, with a special focus on cellobiose-fermenting species. About 647 yeast strains were isolated from rotting wood samples collected from the areas of Atlantic rainforest, Cerrado, and Amazonian forest. Eighty-six known species and 47 novel species of yeasts were isolated. Candida boidinii, Cyberlindnera subsufficiens, Meyerozyma guilliermondii, Schwanniomyces polymorphus, Candida natalensis, and Debaryomyces hansenii were the most frequently isolated species. Among the cellobiose-fermenting yeasts, 14 known and three novel yeast species were identified. Scheffersomyces queiroziae, Sc. amazonensis, Yamadazyma sp.1, Hanseniaspora opuntiae, C. jaroonii, and Candida tammaniensis were the main ethanol-producing yeasts. These species also produced an intracellular ß-glucosidase responsible for cellobiose hydrolysis. In fermentation assays using a culture medium containing 50 g L-1 cellobiose, ethanol production was observed in all cases; Sc. queiroziae and Sc. amazonensis showed the highest yield, efficiency, and productivity. Candida jaroonii and Yamadazyma sp.1 strains also showed high efficiency in cellobiose fermentation, while C. tammaniensis and H. opuntiae strains produced low amounts of ethanol. This study shows the potential of rotting wood samples from Brazilian ecosystems as a source of yeasts, including new species as well as those with promising biotechnological properties.


Asunto(s)
Biodiversidad , Celobiosa/metabolismo , Levaduras/fisiología , Brasil , Ecosistema , Fermentación , Madera/microbiología , Levaduras/genética , Levaduras/aislamiento & purificación , beta-Glucosidasa/metabolismo
15.
Int J Syst Evol Microbiol ; 68(4): 1333-1343, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29498615

RESUMEN

Six novel yeast species, Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., Starmerella opuntiae f.a., sp. nov., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a, sp. nov. are proposed to accommodate 19 isolates recovered from ephemeral flowers or bees in Brazil, Costa Rica and Belize. Sequence analysis of the ITS-5.8S region (when available) and the D1/D2 domains of the large subunit of the rRNA gene showed that the six novel yeasts are phylogenetically related to several species of the Starmerella clade. The type strains are Starmerella camargoi f.a., sp. nov. UFMG-CM-Y595T (=CBS 14130T; Mycobank number MB 822640), Starmerella ilheusensis f.a., sp. nov. UFMG-CM-Y596T (=CBS CBS14131T; MB 822641), Starmerella litoralis f.a., sp. nov. UFMG-CM-Y603T (=CBS14104T; MB 822642), Starmerella opuntiae f.a., sp. nov. UFMG-CM-Y286T (=CBS 13466T; MB 822643), Starmerella roubikii f.a., sp. nov. UWOPS 01-191.1 (=CBS 15148; MB 822645) and Starmerella vitae f.a., sp. nov. UWOPS 00-107.2 (=CBS 15147T; MB 822646). In addition, 25 species currently assigned to the genus Candida are reassigned formally to the genus Starmerella.


Asunto(s)
Abejas/microbiología , Flores/microbiología , Filogenia , Saccharomycetales/clasificación , Animales , Belice , Brasil , Candida/clasificación , Costa Rica , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Saccharomycetales/genética , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN
16.
Sci Rep ; 7(1): 10799, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883445

RESUMEN

Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even though the tropics occupy 40% of the Earth's land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Amazon forest and Cerrado savanna), predicting major differences among biomes in relation to temperature and precipitation regimes. Precipitation explained most of litter inputs and storage, which were generally higher in more humid biomes (litterfall: 384, 422 and 308 g m-2 y-1, storage: 55, 113 and 38 g m-2, on average in Atlantic forest, Amazon and Cerrado, respectively). Temporal dynamics varied across biomes in relation to precipitation and temperature, with uniform litter inputs but seasonal storage in Atlantic forest streams, seasonal inputs in Amazon and Cerrado streams, and aseasonal storage in Amazon streams. Our findings suggest that litter dynamics vary greatly within the tropics, but point to the major role of precipitation, which contrasts with the main influence of temperature in temperate areas.


Asunto(s)
Ecosistema , Bosques , Plantas , Ríos , Brasil , Lluvia , Temperatura , Clima Tropical
17.
Antonie Van Leeuwenhoek ; 110(1): 53-67, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27688209

RESUMEN

Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment D-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Saccharomycetales/aislamiento & purificación , Saccharum/microbiología , Xilitol/metabolismo , Xilosa/metabolismo , Brasil , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/genética , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomycetales/clasificación , Saccharomycetales/genética , Saccharomycetales/metabolismo , Madera/microbiología
18.
Int J Syst Evol Microbiol ; 66(7): 2550-2557, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27088571

RESUMEN

Four strains alternating between yeast and filamentous growth morphologies were isolated from flowers in two regions of Laos. In liquid environment the isolates propagated by budding and developed irregularly shaped pseudohyphae. On solid media, their yeast cells switched to hyphal growth which could return to the yeast phase by developing lateral blastoconidia. The sequences of the D1/D2 domains of the large subunit (LSU) 26S rRNA genes, the internal transcribed spacer (ITS) regions and the small subunit (SSU) 18S rRNA genes were identical in the four strains and differed from the corresponding sequences of other yeast species available in databases by at least 11 % (D1/D2), 13 % (ITS) and 7 % (SSU). In an independent project, two strains with D1/D2 and ITS sequences very similar to those of the Laotian strains were found in bark samples collected in Brazil. The six strains also differed from the closest yeast species in physiological properties, indicating that they represented a hitherto undescribed species. Phylogenetic analysis of the D1/D2 sequences, and the concatenated sequences of the SSU rRNA genes, D1/D2 domains of LSU rRNA genes as well as the protein-encoding genes ACT1 and TEF1 placed thestrains close to Hyphopichia. To reflect this position, the novel genus name Metahyphopichia gen. nov. and the novel species name Metahyphopichia laotica gen. nov., sp. nov. are proposed for them. The type strain of the type species is 11-1006T(=CBS 13022T=CCY 092-001-001T=NCAIM Y.02126T) and was isolated in Luang Prabang (Laos). MycoBank registration numbers are MB 808253 (Metahyphopichia) and MB 808254 (Metahyphopichia laotica).


Asunto(s)
Flores/microbiología , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Laos , Técnicas de Tipificación Micológica , Filogenia , Plantas/microbiología , ARN Ribosómico/genética , ARN Ribosómico 18S/genética , Saccharomycetales/química , Saccharomycetales/genética , Análisis de Secuencia de ADN
19.
Genome Biol Evol ; 8(2): 317-29, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26782936

RESUMEN

The natural biology of Saccharomyces cerevisiae, the best known unicellular model eukaryote, remains poorly documented and understood although recent progress has started to change this situation. Studies carried out recently in the Northern Hemisphere revealed the existence of wild populations associated with oak trees in North America, Asia, and in the Mediterranean region. However, in spite of these advances, the global distribution of natural populations of S. cerevisiae, especially in regions were oaks and other members of the Fagaceae are absent, is not well understood. Here we investigate the occurrence of S. cerevisiae in Brazil, a tropical region where oaks and other Fagaceae are absent. We report a candidate natural habitat of S. cerevisiae in South America and, using whole-genome data, we uncover new lineages that appear to have as closest relatives the wild populations found in North America and Japan. A population structure analysis revealed the penetration of the wine genotype into the wild Brazilian population, a first observation of the impact of domesticated microbe lineages on the genetic structure of wild populations. Unexpectedly, the Brazilian population shows conspicuous evidence of hybridization with an American population of Saccharomyces paradoxus. Introgressions from S. paradoxus were significantly enriched in genes encoding secondary active transmembrane transporters. We hypothesize that hybridization in tropical wild lineages may have facilitated the habitat transition accompanying the colonization of the tropical ecosystem.


Asunto(s)
Ecosistema , Hibridación Genética , Saccharomyces cerevisiae/genética , Brasil , Fagaceae/microbiología , Especiación Genética , Genoma Fúngico , Proteínas de Transporte de Membrana/genética , Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética
20.
Int J Syst Evol Microbiol ; 65(12): 4469-4473, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26364292

RESUMEN

Nine strains of a novel yeast species were isolated from rotting wood, tree bark, ant nests or living as endophytes in leaves of Vellozia gigantea. Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species was related to Candida insectorum in the Yamadazyma clade. The novel species differed from closely related species by 10 and 11 substitutions in the ITS region and the D1/D2 domains of the large subunit of the rRNA gene, respectively. The species is heterothallic and forms asci with one to two hat-shaped ascospores. The name Yamadazyma riverae sp. nov. is proposed for the novel species. The type strain is UFMG-CM-Y444T ( = CBS 14121T) and the allotype strain is TT12 ( = CBS 14098 = UFMG-CM-Y577). The Mycobank number is MB 813221.


Asunto(s)
Magnoliopsida/microbiología , Filogenia , Hojas de la Planta/microbiología , Saccharomycetales/clasificación , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Saccharomycetales/genética , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN , Madera/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...