Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 9(74): 34030, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30338044

RESUMEN

[This corrects the article DOI: 10.18632/oncotarget.25267.].

2.
Oncotarget ; 9(34): 23780-23823, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29805774

RESUMEN

The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.

3.
Mol Biotechnol ; 59(1): 46-56, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28025776

RESUMEN

Ubiquitin-proteasome system plays an essential role in the immune response due to its involvement in the antigen generation and presentation to CD8+ T cells. Hereby, ubiquitin fused to antigens has been explored as an immunotherapeutic strategy that requires the activation of cytotoxic T lymphocytes. Here we propose to apply this ubiquitin fusion approach to a recombinant vaccine against human papillomavirus 16-infected cells. E6E7 multi-epitope antigen was fused genetically at its N- or C-terminal end to ubiquitin and expressed in Escherichia coli as inclusion bodies. The antigens were solubilized using urea and purified by nickel affinity chromatography in denatured condition. Fusion of ubiquitin to E6E7 resulted in marked polyubiquitination in vitro mainly when fused to the E6E7 N-terminal. When tested in a therapeutic scenario, the fusion of ubiquitin to E6E7 reinforced the anti-tumor protection and increased the E6/E7-specific cellular immune responses. Present results encourage the investigation of the adjuvant potential of the ubiquitin fusion to recombinant vaccines requiring CD8+ T cells.


Asunto(s)
Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Vacunas contra Papillomavirus/administración & dosificación , Proteínas Represoras/genética , Ubiquitina/genética , Animales , Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica , Papillomavirus Humano 16/genética , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina/metabolismo
4.
Oncotarget ; 7(12): 13865-79, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26885618

RESUMEN

The epithelium-specific Ets transcription factor, SPDEF, plays a critical role in metastasis of prostate and breast cancer cells. While enhanced SPDEF expression blocks migration and invasion, knockdown of SPDEF expression enhances migration, invasion, and metastasis of cancer cells. SPDEF expression and activation is tightly regulated in cancer cells; however, the precise mechanism of SPDEF regulation has not been explored in detail. In this study we provide evidence that the cell cycle kinase CDK11p58, a protein involved in G2/M transition and degradation of several transcription factors, directly interacts with and phosphorylates SPDEF on serine residues, leading to subsequent ubiquitination and degradation of SPDEF through the proteasome pathway. As a consequence of CDK11p58 mediated degradation of SPDEF, this loss of SPDEF protein results in increased prostate cancer cell migration and invasion. In contrast, knockdown of CDK11p58 protein expression by interfering RNA or SPDEF overexpression inhibit migration and invasion of cancer cells. We demonstrate that CDK11p58 mediated degradation of SPDEF is attenuated by Growth Arrest and DNA damage-inducible 45 (GADD45) α and , two proteins inducing G2/M cell cycle arrest. We show that GADD45 α and γ, directly interact with CDK11p58 and thereby inhibit CDK11p58 activity, and consequentially SPDEF phosphorylation and degradation, ultimately reducing prostate cancer cell migration and invasion. Our findings provide new mechanistic insights into the complex regulation of SPDEF activity linked to cancer metastasis and characterize a previously unidentified SPDEF/CDK11p58/GADD45α/γ pathway that controls SPDEF protein stability and SPDEF-mediated effects on cancer cell migration and invasion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Ciclina D3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Proto-Oncogénicas c-ets/metabolismo , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Fosforilación , Neoplasias de la Próstata/metabolismo , Mapas de Interacción de Proteínas , Estabilidad Proteica , Proteolisis , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA