Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 321: 111326, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696926

RESUMEN

Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV. Their effects on leaf metabolites were determined using untargeted metabolomics. Blue and white growth light triggered increased levels of compounds related to primary and secondary metabolism, including amino acids, phenolics, hormones, and compounds related to sugar metabolism and the TCA cycle. In contrast, supplementary UV in a blue or white light background decreased leaf content of amino acids, phenolics, sugars, and TCA-related compounds, without affecting abscisic acid, auxin, zeatin, or jasmonic acid levels. However, in plants grown under green light, UV induced increased levels of phenolics, hormones (auxin, zeatin, dihydrozeatin-7-N-dihydrozeatin, jasmonic acid), amino acids, sugars, and TCA cycle-related compounds. Plants grown under red light with UV mainly showed decreased sugar content. These findings highlight the importance of the blue light component for metabolite accumulation. Also, data on interactions of UV with green light on the one hand, and blue or white light on the other, further contributes to our understanding of light quality regulation of plant metabolism.


Asunto(s)
Cucumis sativus , Aminoácidos/metabolismo , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/metabolismo , Azúcares/metabolismo , Rayos Ultravioleta , Zeatina/metabolismo
2.
Physiol Plant ; 173(3): 750-761, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510478

RESUMEN

During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves. The growth light backgrounds differentially regulated gene expression and metabolite accumulation. While HY5 and CHS2 transcripts were induced by blue and white light, LHCII was induced by white and red light. Furthermore, UV radiation antagonized the effects of blue, red, green, and white light on transcript accumulation in a gene-dependent manner. Plants grown under blue light with supplementary UV radiation increased phenylalanine, flavonol disaccharide I and caffeic acid contents compared to those exposed only to blue light. UV radiation also induced the accumulation of flavonol disaccharide I and II, ferulic acid hexose and coumaric acid hexose in plants grown under green light. Our findings provide a further understanding of plant responses to UV radiation in combination with different light spectra and contribute to the design of light recipes for horticultural practices that aim to modify plant metabolism and ultimately improve crop quality.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Flavonoides , Hipocótilo , Hojas de la Planta , Rayos Ultravioleta
3.
Plant Physiol ; 186(3): 1382-1396, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826733

RESUMEN

About 95% of the ultraviolet (UV) photons reaching the Earth's surface are UV-A (315-400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280-315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and "UV-B photoreceptor" UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8's role as a UV-B/UV-Asw photoreceptor in sunlight.


Asunto(s)
Criptocromos/fisiología , Fenómenos Fisiológicos de las Plantas , Energía Solar , Rayos Ultravioleta
4.
Front Plant Sci ; 11: 610011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469462

RESUMEN

Ultraviolet B (UV-B) (280-315 nm) and ultraviolet A (UV-A) (315-400 nm) radiation comprise small portions of the solar radiation but regulate many aspects of plant development, physiology and metabolism. Until now, how plants respond to UV-B in the presence of different light qualities is poorly understood. This study aimed to assess the effects of a low UV-B dose (0.912 ± 0.074 kJ m-2 day-1, at a 6 h daily UV exposure) in combination with four light treatments (blue, green, red and broadband white at 210 µmol m-2 s-1 Photosynthetically active radiation [PAR]) on morphological and physiological responses of cucumber (Cucumis sativus cv. "Lausanna RZ F1"). We explored the effects of light quality backgrounds on plant morphology, leaf gas exchange, chlorophyll fluorescence, epidermal pigment accumulation, and on acclimation ability to saturating light intensity. Our results showed that supplementary UV-B significantly decreased biomass accumulation in the presence of broad band white, blue and green light, but not under red light. UV-B also reduced the photosynthetic efficiency of CO2 fixation (α) when combined with blue light. These plants, despite showing high accumulation of anthocyanins, were unable to cope with saturating light conditions. No significant effects of UV-B in combination with green light were observed for gas exchange and chlorophyll fluorescence parameters, but supplementary UV-B significantly increased chlorophyll and flavonol contents in the leaf epidermis. Plants grown under red light and UV-B significantly increased maximum photosynthetic rate and dark respiration compared to pure red light. Additionally, red and UV-B treated plants exposed to saturating light intensity showed higher quantum yield of photosystem II (PSII), fraction of open PSII centres and electron transport rate and showed no effect on the apparent maximum quantum efficiency of PSII photochemistry (Fv/Fm) or non-photochemical quenching, in contrast to solely red-light conditions. These findings provide new insights into how plants respond to UV-B radiation in the presence of different light spectra.

5.
Photochem Photobiol Sci ; 18(2): 434-447, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30629071

RESUMEN

Blue light and UV radiation shape a plant's morphology and development, but accession-dependent responses under natural conditions are unclear. Here we tested the hypothesis that two faba bean (Vicia faba L.) accessions adapted to different latitudes and altitudes vary in their responses to solar blue and UV light. We measured growth, physiological traits, phenolic profiles and expression of associated genes in a factorial experiment combining two accessions (Aurora, a Swedish cultivar adapted to high latitude and low altitude; ILB938, from the Andean region of Colombia and Ecuador, adapted to low latitude and high altitude) and four filter treatments created with plastic sheets: 1. transparent as control; 2. attenuated short UV (290-350 nm); 3. attenuated UV (290-400 nm); 4. attenuated blue and UV light. In both accessions, the exclusion of blue and UV light increased plant height and leaf area, and decreased transcript abundance of ELONGATED HYPOCOTYL 5 (HY5) and TYROSINE AMINOTRANSFERASE 3 (TAT3). Blue light and short UV induced the accumulation of epidermal and whole-leaf flavonoids, mainly quercetins, and the responses in the two accessions were through different glycosides. Filter treatments did not affect kaempferol concentration, but there were more tri-glycosides in Aurora and di-glycosides in ILB938. Furthermore, fewer quercetin glycosides were identified in ILB938. The transcript abundance was consistently higher in Aurora than in ILB938 for all seven investigated genes: HY5, TAT3, CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), DON-GLUCOSYLTRANSFERASE 1 (DOGT1), ABA INSENSITIVE 2 (ABI2), AUXIN-INDUCIBLE 2-27 (IAA5). The two largest differences in transcript abundance between the two accessions across treatments were 132-fold in CHS and 30-fold in DOGT1 which may explain the accession-dependent glycosylation patterns. Our findings suggest that agronomic selection for adaptation to high altitude may favour phenotypes with particular adaptations to the light environment, including solar UV and blue light.


Asunto(s)
Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz Solar , Rayos Ultravioleta , Vicia faba/metabolismo , Vicia faba/efectos de la radiación , Fenoles/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vicia faba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...