Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 22: 100767, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32490213

RESUMEN

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

2.
Hum Mol Genet ; 28(24): 4043-4052, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29893868

RESUMEN

Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course owing to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Conexina 43/metabolismo , Lamina Tipo A/genética , Paclitaxel/farmacología , Acetilación/efectos de los fármacos , Animales , Trastorno del Sistema de Conducción Cardíaco/genética , Cardiomiopatías/patología , Conexina 43/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Microtúbulos/patología , Mutación , Miocardio/patología , Miocitos Cardíacos/patología
3.
Front Physiol ; 9: 1533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425656

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.

5.
Hum Mol Genet ; 27(22): 3870-3880, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30053027

RESUMEN

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscle and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for heart function. Biosynthesis of NAD+ from vitamin B3 (known as salvage pathways) is the primary source of NAD+. We showed here that NAD+ salvage pathway was altered in the heart of mouse and human carrying LMNA mutation, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Oral administration of nicotinamide riboside, a natural NAD+ precursor and a pyridine-nucleoside form of vitamin B3, leads to a marked improvement of the NAD+ cellular content, an increase of PARylation of cardiac proteins and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our results provide mechanistic and therapeutic insights into dilated cardiomyopathy caused by LMNA mutations.


Asunto(s)
Cardiomiopatías/genética , Corazón/fisiopatología , Lamina Tipo A/genética , NAD/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones , Mutación , NAD/biosíntesis , Niacinamida/genética , Niacinamida/metabolismo , Poli ADP Ribosilación/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
6.
Hum Mol Genet ; 27(17): 3060-3078, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878125

RESUMEN

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Asunto(s)
Actinas/metabolismo , Cardiomiopatía Dilatada/patología , Cofilina 1/metabolismo , Lamina Tipo A/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Actinas/genética , Adolescente , Adulto , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Estudios de Casos y Controles , Cofilina 1/genética , Femenino , Corazón/fisiología , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...