Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672319

RESUMEN

The Hedgehog receptor, Patched1 (PTCH1), is a well-known tumour suppressor. While the tumour suppressor's activity is mostly ascribed to its function as a repressor of the canonical Smoothened/Gli pathway, its C-terminal domain (CTD) was reported to have additional non-canonical functions. One of them is the reduction of autophagic flux through direct interaction with the Unc-51, like the autophagy activating kinase (ULK) complex subunit autophagy-related protein-101 (ATG101). With the aim of investigating whether this function of PTCH1 is important in cancer cell fitness, we first identified frameshift mutations in the CTD of PTCH1 in cancer databases. We demonstrated that those mutations disrupt PTCH1 interaction with ATG101 and increase autophagic flux. Using deletion mutants of the PTCH1 CTD in co-immunoprecipitation studies, we established that the 1309-1447 region is necessary and sufficient for interaction with ATG101. We next showed that the three most common PTCH1 CTD mutations in endometrial, stomach and colon adenocarcinomas that cause frameshifts at S1203, R1308 and Y1316 lack the ability to interact with ATG101 and limit autophagic flux, determined by bafilomycin A1-sensitive accumulation of the autophagy markers LC3BII and p62. We next engineered PTCH1 indel mutations at S1223 by CRISPR/Cas9 in SW620 colon cancer cells. Comparison of two independent clones harbouring PTCH1 S1223fs mutations to their isogenic parental cell lines expressing wild-type PTCH1 showed a significant increase in basal and rapamycin-stimulated autophagic flux, as predicted by loss of ATG101 interaction. Furthermore, the PTCH1 CTD mutant cells displayed increased proliferation in the presence of rapamycin and reduced sensitivity to glycolysis inhibitors. Our findings suggest that loss of the PTCH1-ATG101 interaction by mutations in the CTD of PTCH1 in cancer might confer a selective advantage by stimulating autophagy and facilitating adaptation to nutrient deprivation conditions.

2.
Cells ; 10(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34440772

RESUMEN

The Hedgehog (Hh) receptor PTCH1 and the integral membrane protein 2A (ITM2A) inhibit autophagy by reducing autolysosome formation. In this study, we demonstrate that ITM2A physically interacts with PTCH1; however, the two proteins inhibit autophagic flux independently, since silencing of ITM2A did not prevent the accumulation of LC3BII and p62 in PTCH1-overexpressing cells, suggesting that they provide alternative modes to limit autophagy. Knockdown of ITM2A potentiated PTCH1-induced autophagic flux blockade and increased PTCH1 expression, while ITM2A overexpression reduced PTCH1 protein levels, indicating that it is a negative regulator of PTCH1 non-canonical signalling. Our study also revealed that endogenous ITM2A is necessary for timely induction of myogenic differentiation markers in C2C12 cells since partial knockdown delays the timing of differentiation. We also found that basal autophagic flux decreases during myogenic differentiation at the same time that ITM2A expression increases. Given that canonical Hh signalling prevents myogenic differentiation, we investigated the effect of ITM2A on canonical Hh signalling using GLI-luciferase assays. Our findings demonstrate that ITM2A is a strong negative regulator of GLI transcriptional activity and of GLI1 stability. In summary, ITM2A negatively regulates canonical and non-canonical Hh signalling.


Asunto(s)
Autofagia , Diferenciación Celular , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos , Mioblastos Esqueléticos/metabolismo , Receptor Patched-1/metabolismo , Transducción de Señal , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Receptor Patched-1/genética , Unión Proteica , Mapas de Interacción de Proteínas , Proteína con Dedos de Zinc GLI1/metabolismo
3.
Mol Cancer Res ; 16(5): 909-919, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29453315

RESUMEN

The Hedgehog (Hh) receptor Patched1 (PTCH1) is a well-known tumor suppressor that in its active form represses Smoothened (SMO) activity, inhibits proliferation, and induces apoptosis. The cytoplasmic C-terminal domain (CTD) regulates PTCH1 turnover and nucleates a proapoptotic complex. In this study, it was mechanistically determined that Autophagy-related 101 (ATG101), essential for mammalian autophagy, physically interacts with the CTD of PTCH1 and connects it to the ULK complex, which stimulates the autophagy machinery in response to changes in nutrient availability. This interaction results in a blockade of basal autophagic flux and accumulation of autophagosomes with undegraded cargo. Remarkably, this function of PTCH1 is independent of its repressive activity on SMO, as shown in SMO-deficient cells or in the presence of a SMO inhibitor, but is opposed by Sonic Hedgehog (SHH). These findings reveal a novel noncanonical function of PTCH1 that limits autophagy, mediated by ATG101, which could have therapeutic implications in Hh-dependent cancers.Implications: Loss-of-function of the tumor suppressor Patched1 might promote cancer cell fitness by increasing autophagic flux in response to metabolic or environmental stresses. Mol Cancer Res; 16(5); 909-19. ©2018 AACR.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Autofagia , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ratones , Dominios Proteicos , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...