Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; : e13421, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826071

RESUMEN

Reproduction in all mammalian species depends on the growth and maturation of ovarian follicles, that is, folliculogenesis. Follicular development can culminate with the rupture of mature follicles and the consequent expulsion of their oocytes (ovulation) or in atresia, characterized by the arrest of development and eventual degeneration. These processes are regulated by different neuroendocrine signals arising at different hypothalamic nuclei, including the suprachiasmatic nucleus (SCN). In the later, the activation of muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs) by acetylcholine is essential for the regulation of the pre-ovulatory signals that stimulate the rupture of mature follicles. To evaluate the participation of the nAChRs in the SCN throughout the oestrous cycle in the regulation of the hypothalamic-pituitary-ovarian axis. For this purpose, 90-day-old adult female rats in metoestrus, dioestrus, proestrus or oestrus were microinjected into the left- or right-SCN with 0.3 µL of saline solution as vehicle or with 0.225 µg of mecamylamine (Mec), a non-selective antagonist of the nicotinic receptors, diluted in 0.3 µL of vehicle. The animals were sacrificed when they presented vaginal cornification, indicative of oestrus stage, and the effects of the unilateral pharmacological blockade of the nAChRs in the SCN on follicular development, ovulation and secretion of oestradiol and follicle-stimulating hormone (FSH) were evaluated. The microinjection of Mec decreased the serum levels of FSH, which resulted in a lower number of growing and healthy follicles and an increase in atresia. The higher percentage of atresia in pre-ovulatory follicles was related to a decrease in the number of ova shed and abnormalities in oestradiol secretion. We also detected asymmetric responses between the left and right treatments that depended on the stage of the oestrous cycle. The present results allow us to suggest that during all the stages of the oestrous cycle, cholinergic signals that act on the nAChRs in the SCN are pivotal to modulate the secretion of gonadotropins and hence the physiology of the ovaries. Further research is needed to determine if such signals are generated by the cholinergic neurons in the SCN or by cholinergic afferents to the SCN.

2.
Anim Reprod ; 20(3): e20220102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026000

RESUMEN

Presently, demyelinating diseases have been reported to affect the reproductive life of patients who suffer from them, but the progression of the alterations is unknown, especially in men. To better understand these effects, it is necessary to perform studies in animal models, such as the male taiep rat, which exhibits progressive demyelination of the central nervous system, altered kisspeptin expression at the hypothalamic level, and decreased luteinizing hormone, which could alter sperm quality and testicular diameter. Thus, the objective of the present study was to analyze the diameter of the seminiferous tubules, the sperm motility, and the testosterone levels of 90-day-old male taiep rats. The obtained results indicate that male taiep rats show an increase in testicular size accompanied by an increase in the diameter of the seminiferous tubules of the left testicle. There was also a decrease in progressive motility in sperm samples from the left epididymis of male taiep rats compared to the control group, with no changes in serum testosterone concentration. Therefore, we conclude that male taiep rats with central demyelination show altered testicular diameter and decreased motility in sperm from the left side. This type of studies serves as a basis for proposing possible reproductive strategies to improve the fertility and testicular function of men with demyelinating diseases of the central nervous system.

3.
Reprod Biol ; 23(2): 100756, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36924552

RESUMEN

Ovarian functions are modulated by the hypothalamus-pituitary-ovary axis and neural signals. Stress modifies the activity of the sympathetic nervous system. In adult female rats, cold stress results in higher noradrenergic and steroidogenic activity of the ovary, anovulation and the presence of ovarian cysts; however, it is unknown whether this response occurs in prepubertal rats. The purpose of this study was to analyse the effects of cold stress initiated in the prepubertal stage of female rats on ovarian function. Female rats 24 days old were exposed to three, five or eight weeks of cold stress. Autopsies were performed at the end of each stress period. The parameters analysed were the number of ova shed by ovulating animals; the number of ovulating animals; the serum concentrations of progesterone, testosterone, and oestradiol; and the ovarian concentrations of norepinephrine and 3-methoxy-4-hydroxyphenyl-glycol. Our results show that chronic cold stress applied to prepubertal rats did not modify the number of ovulating animals, the total number of ova shed, or progesterone and testosterone concentrations in any of the periods analysed. Oestradiol concentration was lower in the animals exposed to five or eight weeks of stress. The ovarian norepinephrine concentration was higher in the animals exposed to three weeks of stress and was lower at eight weeks of stress. No changes in ovarian morphology were observed. Our data suggest that the changes in noradrenergic activity resulting from chronic cold stress experienced in the prepubertal stage do not modify ovarian architecture or affect the ovulatory response in adulthood.


Asunto(s)
Respuesta al Choque por Frío , Progesterona , Ratas , Animales , Femenino , Estradiol , Norepinefrina/fisiología , Testosterona
4.
Reproduction ; 165(2): 147-157, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342662

RESUMEN

In brief: In the proestrus day, the neural and endocrine signals modulate ovarian function. This study shows vagus nerve plays a role in the multisynaptic pathways of communication between the suprachiasmatic nucleus and the ovaries where such neural information determines ovulation. Abstract: The suprachiasmatic nucleus (SCN) regulates the activity of several peripheral organs through a parasympathetic-sympathetic pathway. Previously, we demonstrated that atropine (ATR) microinjection in the right SCN of rats during proestrus blocks ovulation. In the present study, we analysed whether the vagus nerve is one of the neural pathways by which the SCN regulates ovulation. For this, CIIZ-V strain cyclic rats on the day of proestrus were microinjected with a saline solution (vehicle) or ATR in the right or left SCN, which was followed by ventral laparotomy or ipsilateral vagotomy to the microinjection side. Some animal groups were sacrificed (i) on the same day of the surgery to measure oestradiol, progesterone and luteinizing hormone (LH) levels or (ii) at 24 h after surgery to evaluate ovulation. The left vagotomy in rats microinjected with ATR in the left SCN did not modify ovulation. In rats with ATR microinjection in the right SCN, the right vagotomy increased the levels of steroids and LH on the proestrus and ovulatory response. The present results suggest that the right vagus nerve plays a role in the multisynaptic pathways of communication between the SCN and the ovaries and indicate that such neural information participates in the regulation of the oestradiol and progesterone surge, which triggers the preovulatory peak of LH and determines ovulation.


Asunto(s)
Hormona Luteinizante , Progesterona , Femenino , Ratas , Animales , Progesterona/metabolismo , Hormona Luteinizante/metabolismo , Núcleo Supraquiasmático/metabolismo , Ovulación/fisiología , Estradiol/metabolismo , Atropina/farmacología , Atropina/metabolismo , Nervio Vago/metabolismo
5.
J Chem Neuroanat ; 123: 102120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718292

RESUMEN

Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.


Asunto(s)
Enfermedades Desmielinizantes , Hormona Liberadora de Gonadotropina , Kisspeptinas , Esclerosis Múltiple , Receptores de Kisspeptina-1 , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Femenino , Hormona Liberadora de Gonadotropina/biosíntesis , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biosíntesis , Hormona Luteinizante/sangre , Masculino , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Calidad de Vida , Ratas , Receptores de Kisspeptina-1/biosíntesis
6.
J Mol Histol ; 53(2): 347-356, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35217964

RESUMEN

Ovarian functions decrease with perimenopause. The ovary has extrinsic innervation, but the neural influence on ovarian functions and dysfunction is not well-studied. The present study aimed to biochemically and morphometrically characterize the intrinsic neurons in ovaries from young adult, middle-aged, and senescent Long Evans CII-ZV rats (3, 12, and 15 months old, respectively). Ovaries were extracted from four rats of each age group (n = 12 total), cryopreserved, and processed for immunofluorescence studies with the primary NeuN/ß-tubulin and NeuN/tyrosine hydroxylase (TH) antibodies. The soma area and number of intrinsic neurons in the ovarian stroma, surrounding follicles, corpus luteum, or cyst were evaluated. The intrinsic neurons were grouped in cluster-like shapes in ovarian structures. In senescent rats, the intrinsic neurons were mainly localized in the ovarian stroma and around the cysts. The number of neurons was lower in senescent rats than in young adult rats (p < 0.05), but the soma size was larger than in young adult rats. Immunoreactivity to TH indicated the presence of noradrenergic neurons in the ovary with the same characteristics as NeuN/ß-tubulin, which indicates that they are part of the same neuronal group. Taken together, the findings indicate that the intrinsic neurons may be related to the loss of ovarian functions associated with aging.


Asunto(s)
Ovario , Tubulina (Proteína) , Envejecimiento , Animales , Femenino , Ratas , Ratas Long-Evans , Tirosina 3-Monooxigenasa
7.
Molecules ; 26(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576975

RESUMEN

In rats with polycystic ovary syndrome (PCOS) induced by injection of estradiol valerate (EV), unilateral or bilateral section of the vagus nerve restores ovulatory function in 75% of animals, suggesting that the vagus nerve participates in the development of PCOS. Since the vagus nerve is a mixed nerve through which mainly cholinergic-type information passes, the objective of the present study was to analyze whether acetylcholine (ACh) is involved in the development of PCOS. Ten-day-old rats were injected with 2.0 mg EV, and at 60 days of age, they were microinjected on the day of diestrus in the bursa of the left or right ovary with 100 or 700 mg/kg of ovarian weight atropine, a blocker of muscarinic receptors, and sacrificed for histopathological examination after the surgery. Animals with PCOS microinjected with 100 mg of atropine showed a lack of ovulation, lower serum concentrations of progesterone and testosterone, and cysts. Histology of the ovaries of animals microinjected with 700 mg of atropine showed corpus luteum and follicles at different stages of development, which was accompanied by a lower concentration of progesterone and testosterone. These results allow us to suggest that in animals with PCOS, ACh, which passes through parasympathetic innervation, is an important component in the persistence and development of the pathophysiology.


Asunto(s)
Síndrome del Ovario Poliquístico , Progesterona , Animales , Atropina/farmacología , Estradiol , Femenino , Ovulación/efectos de los fármacos , Ratas
8.
Gen Comp Endocrinol ; 300: 113636, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017581

RESUMEN

Hyperactivity in the sympathetic nervous system has been shown to be related to the development of ovarian pathologies. In addition, obesity has been found to be associated with multiple reproductive anomalies and is considered a chronic stress condition of low intensity with changes in the peripheral sympathetic activity. Therefore, in the present study, we aimed to evaluate if the information reaching the ovaries through the superior ovarian nerve (SON) modifies the ovarian function of Zucker fatty rats. We performed a unilateral section of the SON at 32 days of age and autopsies were carried out on the day of the first vaginal estrus. The results showed that fatty animals do not ovulate on the day of the first vaginal estrus and exhibit an increase in catecholaminergic fibers and the presence of precystic structures in the ovaries, without changes in the onset of puberty or in the secretion of ovarian and hypophyseal hormones. We also found that the section of the right SON resulted in ovulation on the day of the first vaginal estrus, which was accompanied by a decrease in ovarian noradrenaline content. The section of the left SON caused a delay in puberty without changes in the rest of the parameters. These results provide functional evidence that the peripheral sympathetic innervation participates in the regulation of ovarian functions in an animal model of genetic obesity.


Asunto(s)
Tejido Nervioso/fisiología , Ovario/inervación , Ovulación/fisiología , Animales , Catecolaminas/metabolismo , Femenino , Ovario/anatomía & histología , Ratas Zucker , Maduración Sexual/fisiología
9.
Life Sci ; 265: 118792, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220286

RESUMEN

AIMS: In the cyclic rat in estrus, the vasoactive intestinal peptide (VIP) has an impact on ovarian function, which depends on the endocrine status of the animal. In this work, we aimed to clarify the participation of VIP in the pathophysiological condition of polycystic ovary syndrome (PCOS) using a model of PCOS induced by estradiol valerate (EV-PCOS) in rats. MAIN METHODS: In the cyclic rat in estrus and in the EV-PCOS model, we analyzed the acute effects of blocking VIP receptors with the use of an antagonist (Ant-VIP) injected into the left or right ovarian bursa on the steroidogenic response and ovarian catecholamine levels. KEY FINDINGS: In the cyclic animal in estrus, the treatment with Ant-VIP in the left ovarian bursa resulted in a reduction in testosterone serum levels and in ovarian levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), without changes in 4-hydroxy-3-methoxyphenyl (MHPG) and norepinephrine (NE). When the treatment was applied on the right side, only MHPG levels increased. In the EV-PCOS model, the treatment with Ant-VIP in the left ovarian bursa increased testosterone, estradiol, MHPG, and NE levels. When the treatment was performed on the right side, progesterone levels decreased and estradiol increased, without changes in ovarian catecholamines. SIGNIFICANCE: The binding of VIP to its receptors differentially regulates steroidogenesis in the cyclic animal in estrus and in the EV-PCOS model. The blocking of VIP signaling produces changes in ovarian catecholamines.


Asunto(s)
Modelos Animales de Enfermedad , Ovario/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Animales , Catecolaminas/metabolismo , Estradiol/metabolismo , Estradiol/toxicidad , Femenino , Ovario/efectos de los fármacos , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Ratas , Testosterona/metabolismo , Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/metabolismo
10.
Brain Res Bull ; 165: 129-138, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966849

RESUMEN

Reproduction is the biological process that sustains life. It is regulated by a neuro-hormonal mechanism that is synchronized by the interaction among the hypothalamus, hypophysis, and ovaries. Ovulation is regulated by the secretion of the gonadotropin-releasing hormone (GnRH), which stimulates the release of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition to these neuroendocrine signals, other signals originating from the central nervous system, hypophysis, thyroid, adrenal glands, and the ovary itself are also involved. One of the neurotransmission systems involved in the regulation of ovulation is the cholinergic system, which not only participates in the regulation of reproductive functions but also modulates motor coordination, thermoregulation, and cognitive function. In mammals, the vagus nerve is one of the pathways through which acetylcholine reaches the ovary, and this pathway also participates in the regulation of ovulation. However, this regulation depends on the age of the animal (prepubertal or adult) and its endocrine status. The present review analyzes evidence of the roles of the central and peripheral cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation as well as their roles in the development and persistence of polycystic ovary syndrome (PCOS).


Asunto(s)
Acetilcolina/metabolismo , Neuronas Colinérgicas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Ovulación/fisiología , Nervio Vago/metabolismo , Animales , Vías Nerviosas/metabolismo , Transmisión Sináptica/fisiología
11.
J Assist Reprod Genet ; 37(6): 1477-1488, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32363564

RESUMEN

PURPOSE: Little is known about the role of the superior ovarian nerve (SON) in follicular development during the estrus cycle. The aim of the present study was to analyze the role of neural signals arriving through the SON at the ovaries in the regulation of follicular development and ovarian steroid secretion in diestrus 1 of cyclic rats. METHODS: Cyclic rats were subjected to left, right, or bilateral SON sectioning or to unilateral or bilateral laparotomy at diestrus 1 at 11:00 h. Animals were sacrificed 24 h after surgery. RESULTS: Compared to laparotomized animals, unilateral SON sectioning decreased the number of preovulatory follicles, while bilateral SON sectioning resulted in a decreased number of atretic preantral follicles. An important observation was the presence of invaginations in the follicular wall of large antral and preovulatory follicles in animals with denervation. Furthermore, left SON sectioning increased progesterone levels but decreased testosterone levels, which are effects that were not observed in animals that were subjected to right denervation. CONCLUSIONS: At 11:00 h of diestrus 1, the SON was found to stimulate follicle development, possibly via neural signals, such as noradrenaline and/or vasoactive intestinal peptide, and this stimulation induced the formation of follicle-stimulating hormone receptors. The role of the SON in the regulation of ovarian steroid secretion is asymmetric: the left SON inhibits the regulation of progesterone and stimulates testosterone secretion, and the right nerve does not participate in these processes.


Asunto(s)
Diestro/fisiología , Estro/fisiología , Folículo Ovárico/fisiología , Ovario/inervación , Animales , Modelos Animales de Enfermedad , Femenino , Hormona Folículo Estimulante/farmacología , Humanos , Laparotomía , Hormona Luteinizante/farmacología , Tejido Nervioso/patología , Tejido Nervioso/cirugía , Folículo Ovárico/inervación , Folículo Ovárico/cirugía , Ovario/fisiología , Ovario/cirugía , Ovulación/fisiología , Ratas , Testosterona/farmacología
12.
Reprod Biol Endocrinol ; 17(1): 95, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744506

RESUMEN

BACKGROUND: Polycystic ovary syndrome is characterized by hyperactivity of the ovarian sympathetic nervous system, increases in the content and release of norepinephrine, as well as decreases in the number of ß-adrenoreceptors. In the present study, ß-adrenoreceptors in the ovaries of rats with polycystic ovary syndrome were blocked and analyzed the resultant effects on ovulation, hormone secretion and the enzymes responsible for the synthesis of catecholamines. METHODS: At 60 days of age, vehicle or estradiol valerate-treated rats were injected with propranolol [10- 4 M] into the ovarian bursas on oestrus day. The animals were sacrificed on the next day of oestrus, and the ovulation response, the steroid hormone levels in the serum and the immunoreactivity of tyrosine hydroxylase and dopamine ß-hydroxylase in the ovaries were measured. RESULTS: In animals with the induction of polycystic ovary syndrome and ß-adrenoreceptor blocking, ovulation was restored in more than half of the animals and resulted in decreased hyperandrogenism with respect to the levels observed in the estradiol valerate-treated group. Tyrosine hydroxylase and dopamine ß-hydroxylase were present in the theca cells of the growing follicles and the interstitial gland. Injection of propranolol restored the tyrosine hydroxylase and ovarian dopamine ß-hydroxylase levels in rats with polycystic ovary syndrome induction. CONCLUSIONS: The results suggest that a single injection into the ovarian bursas of propranolol, a nonselective antagonist of ß-adrenoreceptor receptors, decreases the serum testosterone concentration and the formation of ovarian cysts, improving the ovulation rate that accompanies lower levels of tyrosine hydroxylase and dopamine ß-hydroxylase in the ovary.


Asunto(s)
Ovulación/efectos de los fármacos , Síndrome del Ovario Poliquístico/metabolismo , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Estradiol , Estro/efectos de los fármacos , Estro/fisiología , Femenino , Humanos , Ovario/efectos de los fármacos , Ovario/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/fisiopatología , Ratas , Testosterona/sangre , Tirosina 3-Monooxigenasa/metabolismo
13.
Front Physiol ; 10: 1309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695622

RESUMEN

In rats with polycystic ovarian syndrome (PCOS) induced by estradiol valerate (EV) injection, sectioning of the vagus nerve in the juvenile stage restores ovulatory function, suggesting that the vagus nerve stimulates the onset and development of PCOS. We analyzed whether in adult rats, the role played by the vagus nerve in PCOS development is associated with the nerve's regulation of noradrenergic activity in the celiac superior mesenteric ganglion (CSMG). Ten-day-old rats were injected with corn oil [vehicle (Vh)] or EV (2 mg). At 76 days of age, rats injected with Vh or EV were subjected to sham surgery or the sectioning of one or both vagus nerves (vagotomy). The animals were sacrificed at 80-82 days of age at vaginal estrus smear. Compared to Vh-treated animals, EV-induced PCOS rats showed a lack of ovulation, the presence of follicular cysts, and a high concentration of testosterone, without changes in noradrenaline concentrations in the CSMG or ovaries. In PCOS rats, sham surgery lowered serum testosterone and noradrenaline concentrations in the CSMG but did not restore ovulation. In animals with PCOS, vagotomy lowered testosterone concentrations to a larger degree than in sham-surgery animals. The ovaries of rats with PCOS and vagotomy showed fresh corpora lutea, indicating ovulation. In EV-treated rats with unilateral vagotomy, the concentration of noradrenaline in the CSMG was similar to that in rats with PCOS and sham surgery, which did not ovulate, while in the ovaries of PCOS rats with left or bilateral vagotomy, the noradrenaline concentration was lower than that in sham-surgery-treated animals. Our results suggest that the vagus nerve regulates PCOS development through a different mechanism than the increase in the noradrenergic activity in the CSMG; however, in ovaries, the restoration of ovulation is associated with a decrease in ovarian noradrenaline.

14.
Exp Physiol ; 104(8): 1179-1189, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31241201

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the role of the nicotinic system of the suprachiasmatic nucleus (SCN) in the regulation of follicular growth and ovulation? What is the main finding and its importance? The stimulation of the nicotinic system of the pro-oestrus rat SCN results in an increase in the number of ova shed, in the number of growing ovarian follicles and in the secretion of oestradiol. ABSTRACT: The timing of the preovulatory luteinizing hormone surge that leads to ovulation depends to a large extent on a functional circadian clock that is localized in the suprachiasmatic nucleus (SCN). The activities of the SCN are regulated by several neurotransmitter systems, including the muscarinic system. Given that acetylcholine binds to muscarinic (mAChRs) and nicotinic (nAChRs) receptors, in the present study, we analysed the effects of unilaterally stimulating nAChRs in the left or right SCN. Stimulation treatment was administered in rats in pro-oestrus at 09.00 or 19.00 h by injecting 0.3 µl of a nicotine solution (200 µm). The effects of the stimulation were assessed by evaluating the number of ova shed, the number of ovarian follicles, and the levels of oestradiol and progesterone in serum 24 h after treatment. We observed that regardless of the time (4 h after lights on, 09.00 h, or immediately after lights off, 19.00 h) or the side of the SCN treated, the unilateral microinjection of nicotine resulted in a higher number of ova shed and higher number of growing follicles in the ovaries as well as higher oestradiol serum levels. When the nicotine microinjection treatment failed to reach the SCN, the oestradiol levels in serum were similar to those of animals treated with vehicle solution. Based on the current results, we suggest that during pro-oestrus, the nicotinic neuronal information in the SCN modulates follicular growth and ovulation in a stimulatory manner.


Asunto(s)
Folículo Ovárico/metabolismo , Ovario/metabolismo , Receptores Nicotínicos/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Estradiol/metabolismo , Estro/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismo , Ovulación/metabolismo , Proestro/metabolismo , Progesterona/metabolismo , Ratas
15.
Reprod Biol Endocrinol ; 16(1): 86, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30193590

RESUMEN

BACKGROUND: The injection of estradiol valerate in female rats induces polycystic ovary syndrome, which is characterized by polycystic ovaries, anovulation, and hyperandrogenism. These characteristics have been associated with an increase in the ovarian concentration of norepinephrine, which occurs before establishing the polycystic ovary syndrome. The bilateral section of the superior ovarian nerve restores ovarian functions in animals with polycystic ovary syndrome. The superior ovarian nerve provides norepinephrine and vasoactive intestinal peptide to the ovary. An increase in the activity of both neurotransmitters has been associated with the development of polycystic ovary syndrome. The purpose of the present study was analyzed the participation of the noradrenergic nervous system in the development of polycystic ovary syndrome using guanethidine as a pharmacological tool that destroys peripheral noradrenergic nerve fibers. METHODS: Fourteen-day old female rats of the CIIZ-V strain were injected with estradiol valerate or vehicle solution. Rats were randomly allotted to one of three guanethidine treatment groups for denervation: 1) guanethidine treatment at age 7 to 27-days, 2) guanethidine treatment at age 14 to 34- days, and 3) guanethidine treatment at age 70 to 90- days. All animals were sacrificed when presenting vaginal oestrus at age 90 to 94-days. The parameters analyzed were the number of ova shed by ovulating animals, the ovulation rate (i.e., the numbers of ovulating animals/the numbers of used animals), the serum concentration of progesterone, testosterone, oestradiol and the immunoreactivity for tyrosine hydroxylase enzyme. All data were analyzed statistically. A p-value of less than 0.05 was considered significant. RESULTS: Our results show that the elimination of noradrenergic fibers before the establishment of polycystic ovary syndrome prevents two characteristics of the syndrome, blocking of ovulation and hyperandrogenism. We also found that in animals that have already developed polycystic ovary syndrome, sympathetic denervation restores ovulatory capacity, but it was not as efficient in reducing hyperandrogenism. CONCLUSION: The results of the present study suggest that the noradrenergic fibers play a stimulant role in the establishment of polycystic ovary syndrome.


Asunto(s)
Guanetidina/uso terapéutico , Síndrome del Ovario Poliquístico/patología , Neuronas Adrenérgicas/efectos de los fármacos , Animales , Estradiol/análogos & derivados , Femenino , Ovario/efectos de los fármacos , Ovario/inervación , Distribución Aleatoria , Ratas Endogámicas , Simpatectomía Química , Factores de Tiempo
16.
Front Physiol ; 9: 1142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30177887

RESUMEN

The superior ovarian nerve (SON) provides neuropeptide-Y, norepinephrine and vasoactive intestinal peptide (VIP) to the ovaries. Ovarian steroidogenesis is modulated by the SON. In the cyclic rat, the acute steroidogenic response to ovarian microinjection of VIP is asymmetric and varies during the estrous cycle. In the present study, we analyze whether the differential effects of VIP in each ovary are modulated by the neural signals arriving through the SON. Cyclic female rats were submitted on diestrus-1, diestrus-2, proestrus, or estrus to a unilateral section of the SON, and immediately afterward, the denervated ovary was either microinjected or not with VIP. Animals were sacrificed 1 h after treatment. The injection of VIP into the left denervated ovary performed on diestrus-1 decreased progesterone levels in comparison with the left SON sectioning group; similar effects were observed on proestrus when VIP was injected into either of the denervated ovaries. Compared to the left SON sectioning group, VIP treatment into the left denervated ovary on diestrus-2 or proestrus decreased testosterone levels, whereas on diestrus-1, proestrus or estrus, the same treatment resulted in higher estradiol levels. Compared to the right SON sectioning group, VIP injected into the right denervated ovary yielded higher testosterone levels on diestrus-1 and estrus and lower testosterone levels on proestrus. VIP injection into the right denervated ovary increased estradiol levels on diestrus-2 or estrus while decreasing them on proestrus. Our results indicate that in the adult cyclic rat, the set neural signals arriving to the ovaries through the SON asymmetrically modulate the role of VIP on steroid hormone secretion, depending on the endocrine status of the animal. The results also support the hypothesis that the left and right ovary respond differently to the VIPergic stimulus.

18.
J Ovarian Res ; 10(1): 18, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28292315

RESUMEN

BACKGROUND: In this work, a detailed anatomical description of the ovarian plexus nerve (OPN) in rats is presented. The distribution of the OPN was analyzed by gross anatomy; the features of the superior mesenteric ganglion (SMG) were determined by histological studies; and the localization of the postganglionic neurons innervating the ovary were identified with retrograde tracer. We studied 19 adult cyclic rats of the CIIZ-V strain. RESULTS: We found that the right OPN originates from the celiac ganglion, the lumbar ganglion of the sympathetic trunk (LGST) and the SMG. The left OPN originates from the LGST and the anastomotic branch from the splanchnic nerve. The SMG was attached to the inferior vena cava containing sympathetic neurons that innervate the right ovary through the OPN, and which is anatomically single. When the tracer was injected into the right ovary, only the SMG showed positive neurons, while when the tracer was injected into the left ovary, labeled postganglionic neurons were observed in the LGST. CONCLUSIONS: This is the first time that it is reported that the SMG is attached to the inferior vena cava and it is directly related to the right ovary. The neural pathways and sympathetic ganglia involved in the communication between the ovaries and the preganglionic neurons are different in the left and right side.


Asunto(s)
Giro del Cíngulo/anatomía & histología , Vías Nerviosas , Ovario/inervación , Animales , Femenino , Ganglios Simpáticos/anatomía & histología , Plexo Lumbosacro/anatomía & histología , Ratas
19.
Reprod Sci ; 24(6): 844-855, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27688242

RESUMEN

The aims of the present study were to analyze if the superior ovarian nerve (SON) plays a role in the neural signals from suprachiasmatic nucleus (SCN) that lead to ovulation and ovarian steroids secretion on proestrus day. Rats on proestrus day were treated at 11.00 to 11.30 or 17.00 to 17.30 hours with 1 of the 3 experimental procedures (1) unilateral or bilateral SON sectioning, (2) unilateral or bilateral injury to the SCN, or (3) unilateral injury to the SCN followed by unilateral sectioning of the SON ipsilateral to the treated SCN. Treatments were evaluated 24 hours after surgical procedures. Compared to laparotomized animals, right or bilateral SON sectioning treatment at 17.00 hours resulted in lower ovulation rates and number of ova shed by the right ovary. The ovaries of nonovulating animals showed early follicular luteinization signs and trapped ova. Bilateral SCN injury treatment at 11.00 hours resulted in anovulation; whereas right SCN injury treatment, with or without right SON sectioning, resulted in a lower number of ova shed. Injecting luteinizing hormone-releasing hormone to animals with bilateral SCN injury restored ovulation. In rats with unilateral or bilateral SON sectioning, or with injury to the SCN with or without unilateral sectioning of the SON, the effects on hormone levels depended of the hormone studied and the time of day treatment was performed. The present results suggest that on proestrus day, the role of the right or both SON in ovulation and steroid hormone secretion regulation takes place through different neuroendocrine mechanisms from SCN.


Asunto(s)
Estradiol/sangre , Ovario/inervación , Ovario/patología , Ovulación/fisiología , Proestro/fisiología , Progesterona/sangre , Núcleo Supraquiasmático/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/farmacología , Ovario/efectos de los fármacos , Ovulación/efectos de los fármacos , Proestro/efectos de los fármacos , Ratas , Testosterona/sangre
20.
Reprod Biol Endocrinol ; 14(1): 34, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27306649

RESUMEN

BACKGROUND: The suprachiasmatic nucleus (SCN) and the cholinergic system of various regions of the hypothalamus participate in the regulation of gonadotropin-releasing hormone (GnRH) and gonadotropin secretion, which are necessary for the occurrence of ovulation. In the present study, our goal was to analyse the effects of unilaterally blocking the muscarinic receptors in the SCN on ovulation and steroid secretion. METHODS: Cyclic rats were randomly allotted to one of the experimental groups. Groups of 8-14 rats were anaesthetized and microinjected with 0.3 µl of saline or a solution of atropine (62.5 ng in 0.3 µl of saline) into the left or right SCN at 09.00 or 19.00 h during diestrus-1 or on the proestrus day. The rats were euthanized on the predicted day of oestrus, and evaluated ovulation and levels of progesterone and oestradiol. Other groups of 10 rats were microinjected with atropine into the left or right SCNs at 09.00 h on the proestrus day, were euthanized eight h later, and luteinizing hormone (LH) was measured. RESULTS: At 09.00 or 19.00 h during diestrus-1, atropine microinjections into the SCNs on either side did not modify ovulation. The atropine microinjections performed at 09.00 h of proestrus into either side of the SCN blocked ovulation (right SCN: 1/9 ovulated vs. 9/10 in the saline group; left SCN: 8/14 ovulated vs. 10/10 in the saline group). The LH levels at 17.00 h in the rats that were microinjected with atropine at 09.00 h of proestrus were lower than those of the controls. In the non-ovulating atropine-treated rats, the injection of synthetic LH-releasing hormone (LHRH) restored ovulation. Atropine treatment at 19.00 h of proestrus on either side of the SCN did not modify ovulation, while the progesterone and oestradiol levels were lower. CONCLUSION: Based on the present results, we suggest that the cholinergic neural information arriving on either side of the SCN is necessary for the pre-ovulatory secretion of LH to induce ovulation. Additionally, the regulation of progesterone and oestradiol secretion by the cholinergic innervation of the SCN varies with the time of day, the day of the cycle, and the affected SCN.


Asunto(s)
Atropina/farmacología , Hormona Luteinizante/sangre , Antagonistas Muscarínicos/farmacología , Ovulación/efectos de los fármacos , Proestro/efectos de los fármacos , Núcleo Supraquiasmático/efectos de los fármacos , Animales , Femenino , Ovario/efectos de los fármacos , Proestro/metabolismo , Ratas , Núcleo Supraquiasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...