Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Veg Hist Archaeobot ; 31(1): 67-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35068701

RESUMEN

The taxonomic resolution of palynological identification is determined by morphological criteria that are used to define pollen types. Different levels of taxonomic resolution are reached in palynology, depending on several factors such as the analyst's expertise, the palynological school, the aim of the study, the preservation of the pollen grains, the reference collections and the microscope facilities. Previous research has suggested that attaining pollen records with high taxonomic resolution is important to reconstruct correctly past land use and human impact. This is in turn central to disentangling past human activities from other drivers of long-term vegetation dynamics such as natural disturbance or climate variability. In this study, we assess the impact of taxonomic resolution on the indicative capacity of anthropogenic pollen types. To achieve this, we attribute the pollen types of sixteen sedimentary records, located along a latitudinal gradient spanning from Switzerland to Italy, to three levels of taxonomic resolution previously proposed at the European scale. Our results show that higher taxonomic resolution improves the identification of human impact by enhancing the indicative power of important pollen indicators widely used in the research field. Our results may contribute to the improvement of palynological reconstructions of land use and human impact by identifying key pollen types whose determination requires particular attention. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00334-021-00838-x.

2.
Veg Hist Archaeobot ; 30(6): 789-813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720442

RESUMEN

Knowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record covering the past ~ 8,000 years from Lago di Baratz, north-west Sardinia. Vegetation and fire history are reconstructed by pollen, spores, macrofossils and charcoal analyses and environmental dynamics by high-resolution element geochemistry together with pigment analyses. During the period 8,100-7,500 cal bp, when seasonality was high and fire and erosion were frequent, Erica arborea and E. scoparia woodlands dominated the coastal landscape. Subsequently, between 7,500 and 5,500 cal bp, seasonality gradually declined and thermo-mediterranean woodlands with Pistacia and Quercus ilex partially replaced Erica communities under diminished incidence of fire. After 5,500 cal bp, evergreen oak forests expanded markedly, erosion declined and lake levels increased, likely in response to increasing (summer) moisture availability. Increased anthropogenic fire disturbance triggered shrubland expansions (e.g. Tamarix and Pistacia) around 5,000-4,500 cal bp. Subsequently around 4,000-3,500 cal bp evergreen oak-olive forests expanded massively when fire activity declined and lake productivity and anoxia reached Holocene maxima. Land-use activities during the past 4,000 years (since the Bronze Age) gradually disrupted coastal forests, but relict stands persisted under rather stable environmental conditions until ca. 200 cal bp, when agricultural activities intensified and Pinus and Eucalyptus were planted to stabilize the sand dunes. Pervasive prehistoric land-use activities since at least the Bronze Age Nuraghi period included the cultivation of Prunus, Olea europaea and Juglans regia after 3,500-3,300 cal bp, and Quercus suber after 2,500 cal bp. We conclude that restoring less flammable native Q. ilex and O. europaea forest communities would markedly reduce fire risk and erodibility compared to recent forest plantations with flammable non-native trees (e.g. Pinus, Eucalyptus) and xerophytic shrubland (e.g. Cistus, Erica).

3.
Ecosystems ; 24(6): 1361-1377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288980

RESUMEN

Fagus sylvatica (beech) dominates the montane forests of the Apennines and builds old-growth high-conservation value stands. However, recent severe drought-induced diebacks raise concern on the future persistence of these forests and of Southern European mesophilous woodlands overall, growing at their dry edge. To explore the history of Apennine beech-dominated forests, we draw on the multiproxy paleoecological record from Lago Verdarolo, which includes a robust vegetation-independent temperature reconstruction. Numerical techniques are used to investigate the drivers of long-term Mediterranean mountain forest dynamics. Specifically, we focus on disentangling the ecological factors that caused the shift from high-diversity mixed forests to beech-dominated stands and on assessing the occurrence of legacy effects on present-day forests. Abrupt climate change largely drove vegetation dynamics during the Late Glacial and Early Holocene. Species-rich mixed Abies alba (silver fir) forests dominated about 10,500-5500 years ago, under rather dry and warmer-than-today conditions (+ 1-2 °C) and limited fire occurrence. Cooler and moister summers and increasing fire activity caused declines in several fire-sensitive temperate deciduous trees (for example, Ulmus, Tilia, Fraxinus) and favored the establishment of fir-beech forests around 5500 years ago. Further enhancement of fire activity and farming around 2000 years ago led to local Abies alba extinction and forest impoverishment. We conclude that the currently widespread monospecific Apennine beech forests are the result of multi-millennial land-use intensification superimposed on Late Holocene cooling and moistening. Given their higher drought-tolerance compared to beech stands, reviving ancient species-rich mixed fir forests represents a feasible and 'tested' possibility to adapt forests to climate change.

4.
Nat Ecol Evol ; 4(1): 40-45, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844189

RESUMEN

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments.


Asunto(s)
Biodiversidad , Ecología , Geografía
5.
Ecology ; 100(11): e02833, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31323116

RESUMEN

Mediterranean rear-edge populations of Betula, located at the southwestern Eurasian margin of the distribution range, represent unique reservoirs of genetic diversity. However, increasing densities of wild ungulates, enhanced dryness, and wildfires threaten their future persistence. A historical perspective on the past responses of these relict populations to changing herbivory, fire occurrence and climatic conditions may contribute to assessing their future responses under comparable scenarios. We have reconstructed vegetation and disturbance (grazing, fire) history in the Cabañeros National Park (central-southern Spain) using the paleoecological records of two small mires. We particularly focused on the historical range of variation in disturbance regimes, and the dynamics of rear-edge Betula populations and herbivore densities. Changes in water availability, probably related to the North Atlantic Oscillation (NAO) index, and land-use history have played a crucial role in vegetation shifts. Our data suggest that heathlands (mainly Erica arborea and E. scoparia) and Quercus woodlands dominated during dry phases while Sphagnum bogs and Betula stands expanded during wet periods. Betula populations survived past moderately dry periods but were unable to cope with enhanced land use, particularly increasing livestock raising since ~1,100-900 cal. yr BP (850-1,050 CE), and eventually underwent local extinction. High herbivore densities not only contributed to the Betula demise but also caused the retreat of Sphagnum bogs. Ungulate densities further rose at ~200-100 cal. yr BP (1750-1850 CE) associated with the historically documented intensification of land use around the Ecclesiastical Confiscation. However, herbivory reached truly unprecedented values only during the last decades, following rural depopulation and subsequent promotion of big game hunting. For the first time in temperate and Mediterranean Europe, we have used the abundances of fossil dung fungal spores to assess quantitatively that current high herbivore densities exceed the historical range of variation. In contrast, present fire activity lies within the range of variation of the last millennia, with fires (mainly human-set) mostly occurring during dry periods. Our paleodata highlight the need of controlling the densities of wild ungulates to preserve ecosystem composition and functioning. We also urge to restore Betula populations in suitable habitats where they mostly disappeared because of excessive human activities.


Asunto(s)
Incendios , Herbivoria , Animales , Betula , Ecosistema , Europa (Continente) , Humanos , España
7.
Front Plant Sci ; 9: 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434616

RESUMEN

Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events occurred on the European margin superimposed to a long-term air-sea decoupling trend. Strong air-sea thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This interaction between long-term and shorter time-scale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic processes in Earth models of intermediate complexity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...