Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1034419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466235

RESUMEN

Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.

2.
Oxid Med Cell Longev ; 2019: 3428543, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31814870

RESUMEN

Sarcopenia is a syndrome characterized by a progressive and generalized skeletal muscle mass and strength loss, as well as a poor physical performance, which as strongly been associated with aging. Sedentary lifestyle in the elderly contributes to this condition; however, physical activity improves health, reducing morbidity and mortality. Recent studies have shown that metformin (MTF) can also prevent muscle damage promoting muscular performance. To date, there is great controversy if MTF treatment combined with exercise training improves or nullifies the benefits provided by physical activity. This study is aimed at evaluating the effect of long-term moderate exercise combined with MTF treatment on body composition, strength, redox state, and survival rate during the life of female Wistar rats. In this study, rats performed moderate exercise during 20 of their 24 months of life and were treated with MTF for one year or for 6 months, i.e., from 12 to 24 months old and 18 to 24 months old. The body composition (percentage of fat, bone, and lean mass) was determined using a dual-energy X-ray absorption scanner (DXA), and grip strength was determined using a dynamometer. Likewise, medial and tibial nerve somatosensory evoked potentials were evaluated and the redox state was measured by HPLC, calculating the GSH/GSSG ratio in the gastrocnemius muscle. Our results suggest- that the MTF administration, both in the sedentary and the exercise groups, might activate a mechanism that is directly related to the induction of the hormetic response through the redox state modulation. MTF treatment does not eliminate the beneficial effects of exercise throughout life, and although MTF does not increase muscle mass, it increases longevity.


Asunto(s)
Metformina/farmacología , Fuerza Muscular/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Sarcopenia/prevención & control , Factores de Edad , Animales , Femenino , Humanos , Masculino , Fuerza Muscular/fisiología , Ratas , Ratas Wistar , Sarcopenia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...