Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 550979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193133

RESUMEN

A mathematical first-order difference equation was designed to predict the dynamics of the phage-bacterium adsorption process in aquatic environments, under laboratory conditions. Our model requires knowledge of bacteria and bacteriophage concentrations and the measurements of bacterial size and velocity to predict both the number of bacteriophages adsorbed onto their bacterial host and the number of infected bacteria in a given specific time. It does not require data from previously performed adhesion experiments. The predictions generated by our model were validated in laboratory. Our model was initially conceived as an estimator for the effectiveness of the inoculation of phages as antibacterial therapy for aquaculture, is also suitable for a wide range of potential applications.

2.
MethodsX ; 6: 2614-2619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31763194

RESUMEN

This work details a protocol for recovering bacteriophages from intertidal sessile mussels and testing their lytic activity against pathogenic bacteria. Although bacteriophages were highly abundant in coastal filter-feeding organisms, they were not detectable in the surrounding water column. This difference reflects the high filtering rate of the mussels, which capture and concentrate high amounts of bacteria, generating an ideal environment for bacteriophages. We validated the protocol providing a mean concentration of 4E + 04 PFU mL-1 lytic bacteriophages for the fish-pathogen bacterium Vibrio ordalii. We suggest that this method has particular utility for the recovery of bacteriophages for use as natural antimicrobial agents in aquaculture.

3.
Stand Genomic Sci ; 11: 45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27382430

RESUMEN

The bacterium Vibrio ordalii is best known as the causative agent of vibriosis outbreaks in fish and thus recognized for generating serious production losses in aquaculture systems. Here we report for the first time on the isolation and the genome sequencing of phage vB_VorS-PVo5, infectious to Vibrio ordalii ATCC 33509. The features as well as the complete genome sequence and annotation of the Vibrio phage are described; vB_VorS-PVo5 consists of a lineal double stranded DNA totaling ~ 80.6 Kb in length. Considering its ability to lyse Vibrio ordalii ATCC 33509, the phage is likely to gain importance in future aquaculture applications by controlling the pathogen and as such replacing antibiotics as the treatment of choice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...