Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
3.
Magn Reson Imaging ; 83: 139-151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454984

RESUMEN

Wood is a hygroscopic, multi-scale and anisotropic natural material composed of pores with different size and differently oriented. In particular, archaeologically excavated wood generally is waterlogged wood with very high moisture content (400%-800%) that need to have a rapid investigation at the microstructural level to obtain the best treatment with preservative agents. Time-dependent diffusion coefficient D(t) quantified by Pulse Field Gradient (PFG) Nuclear Magnetic Resonance (NMR) techniques provides useful information about complex porous media, such as the tortuosity (τ) describing pore connectivity and fluid transport through media, the average-pore size, the anisotropic degree (an). However, diffusion NMR is intrinsically limited since it is an indirect measure of medium microstructure and relies on inferences from models and estimation of relevant diffusion parameters. Therefore, it is necessary to validate the information obtained from NMR diffusion parameters through complementary investigations. In this work, the structures of five waterlogged wood species were studied by PFG of absorbed water. D(t) and τ of water diffusing along and perpendicular to vessels/tracheids main axes together with relaxation times and an were quantified. From these parameters, the pore sizes distribution and the wood microstructure characterization were obtained. Results among wood species were compared, validated and integrated by micro-imaging NMR (µ-MRI), environmental-scanning electron-microscope (ESEM) images, wood dry density and imbibition times measurement of all woods. The work suggests that an vs τ rather than the estimated pore size diversifies and characterize the different wood species. As a consequence diffusion-anisotropy vs tortuosity could be an alternative method to characterize and differentiate wood species of waterlogged wood when high resolution images (µ-MRI and ESEM) are not available. Moreover, the combined use of D(t) and micro-MRI expands the scale of dimensions observable by NMR covering all the interesting length scales of wood.


Asunto(s)
Imagen por Resonancia Magnética , Madera , Difusión , Espectroscopía de Resonancia Magnética , Porosidad
4.
Rev Sci Instrum ; 92(7): 074702, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34340412

RESUMEN

This work presents the design and validation of a measuring instrumentation for an easy, complete, and tunable characterization of chemiresistive gas sensors based on metal-oxide semiconductors. The equipment, described in depth both as hardware and as software, was designed to monitor the electrical behavior of gas sensors in controlled thermodynamic conditions. The main goal of this setup is to synchronize the electrical characterization with different measuring conditions, i.e., operating temperature, relative humidity, and gas target concentration. This operation allows us to automate various measurement protocols, otherwise impossible to obtain manually. In particular, this instrumentation permits to correlate the response of a chemiresistive gas sensor to the applied voltage, to its working temperature, and to the gas concentration, automating the acquisition of the current-voltage characteristic and the current-temperature characteristic (Arrhenius plot) of sensing films. The experimental setup was validated by reporting the electrical characterization of a standard metal-oxide-based gas sensing material, such as SnO2, working under different thermodynamic conditions.

5.
Nutr Metab Cardiovasc Dis ; 28(9): 937-943, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30111496

RESUMEN

BACKGROUND AND AIMS: Obesity promotes a persistent inflammatory process in the adipose tissue, activating the endothelium and leading to vascular dysfunction. Preadipocytes can interact with endothelial cells in a paracrine way stimulating angiogenesis. However, the potential of preadipocytes from adipose tissue of high fat diet (HFD) fed animal to stimulate angiogenesis has not been evaluated yet. The aim of this study was to investigate the effects of such diet on the angiogenic potential of preadipocytes in a mice model. METHODS AND RESULTS: We have evaluated body weight gain, fasting glucose levels and insulin resistance, mRNA expression in preadipocytes and endothelial cells after co-culture with preadipocytes, in vivo vascular function and in vitro endothelial cell migration and tubulogenesis. High fat diet promoted an increase in body weight, glycemic index and insulin resistance in mice. Preadipocytes mRNA expression of factors involved in angiogenesis was higher in these animals. In endothelial tEnd cells mRNA expression of factors involved in vessel growth were higher after co-culture with preadipocytes derived from mice fed with HFD. Although no significant differences were observed in in vivo vasodilatation response between control and HFD groups, endothelial tEnd cells showed an increase in migration and tubulogenesis when cultivated with conditioned media from preadipocytes derived from mice fed with HFD. CONCLUSION: Hypoxic and growth factors produced by preadipocytes derived from mice fed with HFD have higher capacity than preadipocytes derived from mice fed with standard diet to stimulate the angiogenic potential of endothelial cells, contributing to vascular disorders in obesity.


Asunto(s)
Adipocitos/metabolismo , Proteínas Angiogénicas/metabolismo , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Obesidad/metabolismo , Comunicación Paracrina , Proteínas Angiogénicas/genética , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/fisiopatología , Transducción de Señal , Vasodilatación
6.
J Mater Chem B ; 6(33): 5335-5342, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32254499

RESUMEN

Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.

7.
Int J Cancer ; 140(2): 346-357, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27615282

RESUMEN

In tumor microenvironments, the macrophage population is heterogeneous, but some macrophages can acquire tumor-promoting characteristics. These tumor-associated macrophages (TAM) exhibit an M2-like profile, with deficient production of NO and ROS, characteristics of pro-inflammatory M1 cytotoxic macrophages. Lipoxins (LX) and 15-epi-lipoxins are lipid mediators which can induce certain features of M2 macrophages in mononuclear cells, but their effects on TAM remain to be elucidated. This study tested the hypothesis that ATL-1, a synthetic analogue of 15-epi-lipoxin A4 , could modulate TAM activity profile. We show that human macrophages (MΦ) differentiated into TAM-like cells after incubation with conditioned medium from MV3, a human melanoma lineage cell. Contrasting with the effects observed in other M2 subsets and M1 profile macrophages, ATL-1 selectively decreased M2 surface markers in TAM, suggesting unique behavior of this particular M2 subset. Importantly, these results were replicated by the natural lipoxins LXA4 and the aspirin induced 15-epi-LXA4 (ATL). In parallel, ATL-1 stimulated TAM to produce NO by increasing the iNOS/arginase ratio and activated NADPH oxidase, triggering ROS production. These alterations in TAM profile induced by ATL-1 led to loss of the anti-apoptotic effects of TAM on melanoma cells and increased their cytotoxic properties. Finally, ATL-1 was found to inhibit tumor progression in a murine model in vivo, which was accompanied by alterations in TAM profile and diminished angiogenesis. Together, the results show an unexpected effect of lipoxin, which induces in TAM a change from an M2- to an M1-like profile, thereby triggering tumor cell apoptosis and down-modulating the tumor progression.


Asunto(s)
Lipoxinas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Melanoma/patología , Animales , Apoptosis/efectos de los fármacos , Arginasa/metabolismo , Biomarcadores/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxidos de Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Climacteric ; 19(4): 337-43, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27170466

RESUMEN

OBJECTIVE: We aimed to investigate the effects of low-dose transdermal estrogen on endothelial and inflammatory biomarkers in menopausal overweight/obese women. METHODS: We recruited 44 menopausal women (47-55 years; body mass index 27.5-34.9 kg/m(2)) and divided them into estradiol (1 mg/day; n = 22) or placebo groups (n = 22). They were double-blinded, followed and treated for 3 months. At baseline and post-intervention, inflammatory biomarkers (hs-CRP, IL-1ß, IL-6, MCP-1 and TNF-α) and of vascular injury (activated circulating endothelial cells, CEC-a) and repair (endothelial progenitor cells, EPC) were quantified. Resting CECs (CEC-r) were also assessed. Microvascular reactivity and vasomotion were analyzed by laser-Doppler flowmetry. RESULTS: Volunteers (51.8 ± 2.3 years; mean body mass index 31.5 ± 2.5 kg/m(2)) had been menopausal for 3 (range 2-5) years. After treatment, no changes were observed in the placebo group, while levels of CEC-r and EPC increased in the estradiol group. In this group, no changes in inflammatory biomarkers were observed but it required a lower cumulative dose of acetylcholine to achieve peak velocity during endothelial-dependent vasodilatation and there was increased endothelial-independent vasodilatation. CONCLUSIONS: The short-term use of low-dose transdermal estradiol therapy in overweight/obese menopausal women increased markers of vascular repair and improved microvascular reactivity without changing the inflammatory biomarkers. CLINICAL TRIAL REGISTRATION: NCT01295892 at www.clinicaltrials.gov .


Asunto(s)
Estradiol/administración & dosificación , Terapia de Reemplazo de Estrógeno/métodos , Estrógenos/administración & dosificación , Obesidad/sangre , Sobrepeso/sangre , Biomarcadores/sangre , Índice de Masa Corporal , Método Doble Ciego , Células Progenitoras Endoteliales/efectos de los fármacos , Femenino , Humanos , Mediadores de Inflamación/sangre , Flujometría por Láser-Doppler , Microvasos/efectos de los fármacos , Persona de Mediana Edad , Obesidad/fisiopatología , Sobrepeso/fisiopatología , Posmenopausia/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Sistema Vasomotor/efectos de los fármacos
9.
Nanoscale ; 8(16): 8505-11, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27064427

RESUMEN

Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 ± 25 and 1100 ± 200 nm respectively. The correlation of these results with TEM and DLS data is discussed.

10.
Phys Chem Chem Phys ; 18(1): 141-8, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26603765

RESUMEN

Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 °C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.

11.
Biochem Pharmacol ; 90(4): 388-96, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24887589

RESUMEN

Lipoxins (LX) and 15-epi-LX are lipids with a potent inhibitory effect on angiogenesis, in different models in vivo and in vitro. ATL-1, a synthetic analog of 15-epi-LXA4, inhibits various actions stimulated by vascular endothelial growth factor (VEGF). However, LX actions on endothelial cells (EC) in tumor-related contexts are still unknown. Here, we investigated the modulation of EC by ATL-1, in a model that mimics tumor extravasation. We observed that the analog inhibited endothelial permeability induced by VEGF, through the stabilization of VE-cadherin/ß-catenin-dependent adherens junctions. We tested the ability of MV3 cells, a highly metastatic melanoma cell line, to transmigrate across unchallenged EC monolayers for 18 h, as compared to NGM normal melanocytes. ATL-1 was able to inhibit only melanoma extravasation. MV3 cells secrete large amounts of VEGF and we observed that ATL-1 per se did not alter this ability. Melanoma cells skills to crossing endothelial monolayers were due to the steady accumulation of tumor-derived VEGF. When endothelial cells were challenged with exogenous VEGF, added at levels comparable to those secreted by MV3 cells over 18 h, and a short-term (4h) transendothelial migration assay was performed, both melanoma and melanocyte cells were able to extravasate, and ATL-1 was able to block the passage of both cells. These results indicate that ATL-1 has a potent inhibitory effect on the permeability induced by VEGF, and that this pharmacological effect could be used to block tumor extravasation across endothelial barriers, with a possible prospect of reducing the haematogenic spread of cancer cells.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Lipoxinas/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiología , Línea Celular Tumoral , Células Cultivadas , Endotelio Vascular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Melanoma/patología , Microscopía Fluorescente , Permeabilidad
12.
Chemphyschem ; 12(4): 863-70, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21337484

RESUMEN

CdSe quantum dots stabilised by thiomalic acid have been synthesised by an aqueous biphasic ligand exchange reaction in air. The materials are completely water-soluble and were found to be stable over a long time. X-ray diffraction and transmission electron microscopy reveal the formation of CdSe nanocrystals with cubic structure (a=0.6077 nm; spatial group: F-43m). The average particle size is about 5 nm. Energy dispersive X-ray analysis shows that the nanocrystals are nonstoichiometric, with a Cd/Se ratio varying between 60/40 and 70/30, and indicates the presence of Cd(2+) ions at the nanocrystal surface. Diffuse reflectance infrared Fourier transform measurements suggest that thiomalic acid chelates CdSe through the thiol group and one carboxylic function, while the second COOH group is semi-free. A complex-like structure is proposed, in which thiomalic acid forms a five-membered chelate ring with the Cd(2+) ions present on the nanocrystal surface. Chelate effect accounts for the easiness of ligand exchange and is expected to additionally stabilise the nanosystem.

13.
Phys Chem Chem Phys ; 12(17): 4473-80, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20407721

RESUMEN

We have devised a novel dip coating procedure to form highly crystalline and macroscopic pi-conjugated architectures on solid surfaces. We have employed this approach to a technologically relevant system, i.e. the electron-acceptor [6,6]-phenyl C61 butyric acid methyl ester molecule (PCBM), which is the most commonly used electron-acceptor in organic photovoltaics. Highly ordered, hexagonal shaped crystals of PCBM, ranging between 1 to 80 mum in diameter and from 20 to 500 nm in thickness, have been grown by dip coating the substrates into a solution containing the fullerene derivative. These crystals have been found to possess a monocrystalline character, to exhibit a hexagonal symmetry and to display micron sized molecularly flat terraces. The crystals have been prepared on a wide variety of surfaces such as SiO(x), silanized SiO(x), Au, graphite, amorphous carbon-copper grids and ITO. Their multiscale characterization has been performed by atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), X-ray diffraction (XRD), optical microscopy, scanning and transmission electron microscopy (SEM, TEM).To test the stability of these electron accepting PCBM crystals, they have been coated with a complementary, electron donor hexa-peri-hexabenzocoronene (HBC) derivative by solution processing from acetone and chloroform-methanol blends. The HBC self assembles in a well-defined network of nanofibers on the PCBM substrate, and the two materials can be clearly resolved by AFM and KPFM.Due to its structural precision on the macroscopic scale, the PCBM crystals appear as ideal interface to perform fundamental photophysical studies in electron-acceptor and -donor blends, as well as workbench for unravelling the architecture vs. function relationship in organic solar cells prototypes.

14.
Braz. j. med. biol. res ; 38(10): 1505-1511, Oct. 2005.
Artículo en Inglés | LILACS | ID: lil-409272

RESUMEN

The alpha2ß1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2ß1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC) and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of 10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2ß1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2ß1 integrin.


Asunto(s)
Animales , Humanos , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Venenos de Crotálidos/química , Desintegrinas/farmacología , /efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Bothrops , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Desintegrinas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , /fisiología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación
15.
Braz J Med Biol Res ; 38(10): 1505-11, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16172743

RESUMEN

The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2beta1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC) and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of approximately 10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2beta1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2beta1 integrin.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Venenos de Crotálidos/química , Desintegrinas/farmacología , Integrina alfa2beta1/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Animales , Bothrops , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Desintegrinas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Humanos , Integrina alfa2beta1/fisiología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación
16.
J Microsc ; 218(Pt 2): 180-4, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15857379

RESUMEN

We consider the effects of different boundaries on the visibility of a specimen detail providing a compositional contrast in scanning electron microscopy, operating with backscattered electrons or secondary electrons. An object characterized by a gradual variation in composition, an As-doped region in Si, is investigated. The different boundaries in the cross-sectioned specimen correspond to the absence or presence of a poly-Si layer on top of the implanted region, deposited after the annealing treatment. It is shown that the interpretation model used for image formation is of paramount relevance for understanding the experimental results, indicating that the boundaries of the doped region are important in hindering or enhancing its visibility. The relevance of experimental parameters such as electron energy and probe dimension is also reported.

17.
Microsc Microanal ; 11(1): 97-104, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15683576

RESUMEN

A conventional scanning electron microscope equipped with a LaB6 source has been modified to operate in a scanning transmission mode. Two detection strategies have been considered, one based on the direct collection of transmitted electrons, the other on the collection of secondary electrons resulting from the conversion of the transmitted ones. Two types of specimens have been mainly investigated: semiconductor multilayers and dopant profiles in As-implanted Si. The results show that the contrast obeys the rules of mass-thickness contrast whereas the resolution is always defined by the probe size independently of specimen thickness and beam broadening. The detection strategy may affect the bright field (light regions look brighter) or dark field (heavy regions look brighter) appearance of the image. Using a direct collection of the transmitted electrons, the contrast can be deduced from the angular distribution of transmitted electrons and their collection angles. When collecting the secondary electrons to explain the image contrast, it is also necessary to take into account the secondary yield dependence on the incidence angle of the transmitted electrons.

18.
Ultramicroscopy ; 94(2): 89-98, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12505758

RESUMEN

Experimental and theoretical results on image contrast of semiconductor multi-layers in scanning electron microscopy investigation are reported. Two imaging modes have been considered: backscattered electron imaging of bulk specimen and scanning transmission imaging of thinned specimens. The following main results have been reached. The image resolution of the multi-layers is, in both cases, defined by the probe size. The contrast, governed by density and atomic number differences, is affected by the size of the interaction volume in backscattered electron imaging and by the beam broadening in scanning transmission. Operating in the scanning transmission mode, the contrast of bright field images can be easily related to local variation in atomic number and density of the specimen while the dark field image contrast is strongly affected by electron beam energy, detector collection angles and specimen thickness. All these factors are able to produce contrast reversals that are difficult to explain without the support of a suitable simulation code.

19.
Infect Immun ; 69(11): 6874-80, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11598061

RESUMEN

Systemic sporotrichosis is an emerging infection potentially fatal for immunocompromised patients. Adhesion to extracellular matrix proteins is thought to play a crucial role in invasive fungal diseases. Here we report studies of the adhesion of Sporothrix schenckii to the extracellular protein fibronectin (Fn). Both yeast cells and conidia of S. schenckii were able to adhere to Fn as detected by enzyme-linked immunosorbent binding assays. Adhesion of yeast cells to Fn is dose dependent and saturable. S. schenckii adheres equally well to 40-kDa and 120-kDa Fn proteolytic fragments. While adhesion to Fn was increased by Ca(2+), inhibition assays demonstrated that it was not RGD dependent. A carbohydrate-containing cell wall neutral fraction blocked up to 30% of the observed adherence for the yeast cells. The biochemical nature of this fraction suggests the participation of cell surface glycoconjugates in binding by their carbohydrate or peptide moieties. These results provide new data concerning S. schenckii adhesion mechanisms, which could be important in host-fungus interactions and the establishment of sporotrichosis.


Asunto(s)
Fibronectinas/metabolismo , Sporothrix/metabolismo , Animales , Cationes Bivalentes , Pared Celular/metabolismo , Humanos , Monosacáridos/metabolismo , Oligopéptidos/metabolismo , Conejos
20.
Ultramicroscopy ; 88(2): 139-50, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11419875

RESUMEN

Numerical simulations of energy filtering effects on backscattered electron images of semiconductor multilayers are reported. The theoretical investigation has been performed for a wide range of energies, 1-40 keV, and for beam incidence angles between 90 degrees (normal incidence) and 20 degrees. Quite a general purpose of this research concerns the investigation of the optimum energy conditions and of their implications. It will be shown that the optimum energy defines an operating context suitable to ensure a compositional contrast enhancement; i.e. a minimum threshold current and a maximum resolution, without energy filtering, independent of the beam incidence angle. This optimum energy, depending on the specimen and its details, is, however, of the order of a few keV or less for specimen details having a size of the order of few nm. When the performance of the electron gun does not allow to work at low energy it is necessary to operate at an energy higher than the optimum one, the energy filtering can produce positive effects. Yet in those circumstances there is an optimum energy loss window suitable to minimise the threshold current. It spreads from 10-30%, depending on the primary energy and size of the compositional detail, for normal incidence, to a few per cent for high incidence angles and high energy. The simulation results for these last conditions are in agreement with the well-known experimental results obtained with the low-loss methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA