Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
RSC Adv ; 13(46): 32413-32423, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37928849

RESUMEN

In response to the increasing availability of hydrogen energy and renewable energy sources, molybdenum disulfide (MoS2)-based electrocatalysts are becoming increasingly important for efficient electrochemical water splitting. This study involves the incorporation of palladium nanoparticles (PdNPs) into hydrothermally grown MoS2via a UV light assisted process to afford PdNPs@MoS2 as an alternative electrocatalyst for efficient energy storage and conversion. Various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS), were used to investigate the morphology, crystal quality, and chemical composition of the samples. Although PdNPs did not alter the MoS2 morphology, oxygen evolution reaction (OER) activity was driven at considerable overpotential. When electrochemical water splitting was performed in 1.0 M KOH aqueous solution with PdNPs@MoS2 (sample-2), an overpotential of 253 mV was observed. Furthermore, OER performance was highly favorable through rapid reaction kinetics and a low Tafel slope of 59 mV dec-1, as well as high durability and stability. In accordance with the electrochemical results, sample-2 showed also a lower charge transfer resistance, which again provided evidence of OER activity. The enhanced OER activity was attributed to a number of factors, including structural, surface chemical compositions, and synergistic effects between MoS2 and PdNPs.

3.
Nat Commun ; 14(1): 7280, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949914

RESUMEN

The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m-2 h-1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.

4.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687502

RESUMEN

Over the years, FIB-SEM tomography has become an extremely important technique for the three-dimensional reconstruction of microscopic structures with nanometric resolution. This paper describes in detail the steps required to perform this analysis, from the experimental setup to the data analysis and final reconstruction. To demonstrate the versatility of the technique, a comprehensive list of applications is also summarized, ranging from batteries to shale rocks and even some types of soft materials. Moreover, the continuous technological development, such as the introduction of the latest models of plasma and cryo-FIB, can open the way towards the analysis with this technique of a large class of soft materials, while the introduction of new machine learning and deep learning systems will not only improve the resolution and the quality of the final data, but also expand the degree of automation and efficiency in the dataset handling. These future developments, combined with a technique that is already reliable and widely used in various fields of research, are certain to become a routine tool in electron microscopy and material characterization.

5.
RSC Adv ; 13(38): 26550-26562, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37692352

RESUMEN

The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes. Besides, the addition of a surfactant (Pluronic F-127) allowed to modify the morphology of the membranes whereas the use of graphene oxide (GO) enabled further photo-activated antibacterial activity. The three additives were tested in various concentrations and in different combinations in order to carefully explore the effects of their mixing on the final photophysical and photodynamic properties. A complete structural/morphologycal characterization of the produced membranes has been performed, together with a detailed photophysical study of the TPP-containing samples, including absorption and emission features, excited state lifetime, singlet oxygen production, and confocal analysis. Their antibacterial activity has been assessed in vitro against S. aureus and E. coli, and the results demonstrated excellent bacterial inactivation for the membranes containing a combination of the three additives, revealing also a non-innocent role of the membrane porous structure in the final antibacterial capacity.

6.
ACS Appl Energy Mater ; 6(11): 6243-6250, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37323205

RESUMEN

Photocatalytic H2 generation holds promise in the green production of alternative fuels and valuable chemicals. Seeking alternative, cost-effective, stable, and possibly reusable catalysts represents a timeless challenge for scientists working in the field. Herein, commercial RuO2 nanostructures were found to be a robust, versatile, and competitive catalyst in H2 photoproduction in several conditions. We employed it in a classic three-component system and compared its activities with those of the widely used platinum nanoparticle catalyst. We observed a hydrogen evolution rate of 0.137 mol h-1 g-1 and an apparent quantum efficiency (AQE) of 6.8% in water using EDTA as an electron donor. Moreover, the favorable employment of l-cysteine as the electron source opens possibilities precluded to other noble metal catalyst. The versatility of the system has also been demonstrated in organic media with impressive H2 production in acetonitrile. The robustness has been proved by the recovery of the catalyst by centrifugation and reusage alternatively in different media.

7.
Adv Mater ; 35(42): e2302756, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37364565

RESUMEN

The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.


Asunto(s)
Materiales Biocompatibles , Difracción de Rayos X
8.
Appl Spectrosc ; 76(12): 1452-1464, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065906

RESUMEN

The aim of this work is to investigate the possibility of engineering desired molecular sp2 structures in graphene oxide, via controlled oxidation of graphite powder, in order to achieve tunable chemical and microstructural properties useful for optoelectronics or sensing applications. Specifically, GO powder is obtained by a modified Hummers method, by using different concentrations of potassium permanganate (KMnO4) in order to change the number of oxygen functionalities in the graphitic structure. Then, a successive alkaline treatment is performed by increasing the KOH concentration. The alkaline treatment induces a noticeable variation of the GO microstructural and chemical properties, which is accompanied by a strong enhancement of photoluminecence. PL and PLE measurements reveal that the configuration of electronic energy states changes as a function of the KMnO4 and KOH concentration, by introducing further electronic n levels available for n→π* transitions. In particular, the number of sp2 small domains embedded among oxygen-sp3 domains, increases under the KOH treatment, due to the addition of OH groups. Most of these sp2 domains are lifted-off from GO and thrown away in the surnatant giving it high blue photoluminescence excited at λexc ∼ 319 nm. The employ of combined spectroscopy techniques allows a deep investigation of the microstructural and chemical changes induced by chemical treatments, opening the way to the fine tuning of GO functional properties.

9.
J Phys Chem C Nanomater Interfaces ; 126(24): 10190-10198, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35774291

RESUMEN

A novel Cu(I) cluster compound has been synthesized by reacting CuI with the 2,2'-dithiobis(5-nitropyridine) ligand under solvothermal conditions. During the reaction, the original ligand breaks into the 5-nitropyridine-2-thiolate moiety, which acts as the coordinating ligand with both N- and S-sites, leading to a distorted octahedral Cu6S6 cluster. The structure has been determined by single-crystal X-ray diffraction and FT-IR analysis, and the photophysical properties have been determined in the solid state by means of steady-state and time-resolved optical techniques. The cluster presents a near-infrared emission showing an unusual temperature dependence: when passing from 77 to 298 K, a blue-shift of the emission band is observed, associated with a decrease in its intensity. Time-dependent-density functional theory calculations suggest that the observed behavior can be ascribed to a complex interplay of excited states, basically in the triplet manifold.

10.
Int J Pharm ; 623: 121888, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35716978

RESUMEN

In this work keratin/poly(lactic acid) (PLA) 50/50 wt blend nanofibers with different loadings of graphene-oxide (GO) were prepared by electrospinning and tested as delivery systems of Rhodamine Blue (RhB), selected as a model of a drug. The effect of GO on the electrospinnability and drug release mechanism and kinetics was investigated. Rheological measurements carried out on the blend solutions revealed unsatisfactory compatibility between keratin and PLA under quiet condition. Accordingly, poor interfacial adhesion between the two phases was observed by SEM analysis of a film prepared by solution casting. On the contrary, keratin chains seem to rearrange under the flux conditions of the electrospinning process thus promoting better interfacial interactions between the two polymers, thereby enhancing their miscibility, which resulted in homogeneous and defect-free nanofibers. The loading of GO into the keratin/PLA solution contributes to increase its viscosity, its shear thinning behavior, and its conductivity. Accordingly, thinner and more homogeneous nanofibers resulted from solutions with a relatively high conductivity coupled with a pronounced shear thinning behavior. FTIR and DSC analyses have underlined, that while the PLA/GO interfacial interactions significantly compete with the PLA/keratin ones, there are no significant effects of GO on the structural organization of keratin in blend with the PLA. However, GO offers several advantages from the application point of view by slightly improving the mechanical properties of the electrospun mats and by slowing down the release of the model drug through the reduction of the matrix swelling.


Asunto(s)
Grafito , Nanofibras , Grafito/química , Queratinas/química , Nanofibras/química , Poliésteres/química
11.
Chemistry ; 28(34): e202200118, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35384090

RESUMEN

Photogeneration of Reactive Oxygen Species (ROS) finds applications in fields as different as nanomedicine, art preservation, air and water depollution and surface decontamination. Here we present photocatalytic nanoparticles (NP) that are active only at acidic pH while they do not show relevant ROS photo-generation at neutral pH. This dual responsivity (to light and pH) is achieved by stabilizing the surface of TiO2 NP with a specific organic shell during the synthesis and it is peculiar of the achieved core shell-structure, as demonstrated by comparison with commercial photocatalytic TiO2 NP. For the investigation of the photocatalytic activity, we developed two methods that allow real time detection of the process preventing any kind of artifact arising from post-treatments and delayed analysis. The reversibility of the pH response was also demonstrated as well as the selective photo-killing of cancer cells at acidic pH.


Asunto(s)
Nanopartículas , Agua , Concentración de Iones de Hidrógeno , Nanopartículas/química , Especies Reactivas de Oxígeno , Titanio/química , Agua/química
12.
Small ; 18(16): e2106403, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35274455

RESUMEN

Energy-storage materials can be assembled directly on the electrodes of a battery using electrochemical methods, this allowing sequential deposition, high structural control, and low cost. Here, a two-step approach combining electrophoretic deposition (EPD) and cathodic electrodeposition (CED) is demonstrated to fabricate multilayer hierarchical electrodes of reduced graphene oxide (rGO) and mixed transition metal sulfides (NiCoMnSx ). The process is performed directly on conductive electrodes applying a small electric bias to electro-deposit rGO and NiCoMnSx in alternated cycles, yielding an ideal porous network and a continuous path for transport of ions and electrons. A fully rechargeable alkaline battery (RAB) assembled with such electrodes gives maximum energy density of 97.2 Wh kg-1 and maximum power density of 3.1 kW kg-1 , calculated on the total mass of active materials, and outstanding cycling stability (retention 72% after 7000 charge/discharge cycles at 10 A g-1 ). When the total electrode mass of the cell is considered, the authors achieve an unprecedented gravimetric energy density of 68.5 Wh kg-1 , sevenfold higher than that of typical commercial supercapacitors, higher than that of Ni/Cd or lead-acid Batteries and similar to Ni-MH Batteries. The approach can be used to assemble multilayer composite structures on arbitrary electrode shapes.

13.
Nanotechnology ; 33(27)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35354121

RESUMEN

Strong demand for renewable energy resources and clean environments have inspired scientists and researchers across the globe to carry out research activities on energy provision, conversion, and storage devices. In this context, development of outperform, stable, and durable electrocatalysts has been identified as one of the major objectives for oxygen evolution reaction (OER). Herein, we offer facile approach for the deposition of few palladium oxide (PdO) nanoparticles on the cobalt-nickel bi-metallic sulphide (CoNi2S4) microstructures represented as PdO@ CoNi2S4using ultraviolet light (UV) reduction method. The morphology, crystalline structure, and chemical composition of the as-prepared PdO@ CoNi2S4composite were probed through scanning electron microscopy, powder x-ray diffraction, high resolution transmission electron microscopy, energy dispersive spectroscopy and x-ray photoelectron spectroscopy techniques. The combined physical characterization results revealed that ultraviolet light (UV) light promoted the facile deposition of PdO nanoparticles of 10 nm size onto the CoNi2S4and the fabricated PdO@ CoNi2S4composite has a remarkable activity towards OER in alkaline media. Significantly, it exhibited a low onset potential of 1.41 V versus reversible hydrogen electrode (RHE) and a low overpotential of 230 mV at 10 mA cm-2. Additionally, the fabricated PdO@ CoNi2S4composite has a marked stability of 45 h. Electrochemical impedance spectroscopy has shown that the PdO@CoNi2S4composite has a low charge transfer resistance of 86.3 Ohms, which favours the OER kinetics. The PdO@ CoNi2S4composite provided the multiple number of active sites, which favoured the enhanced OER activity. Taken together, this new class of material could be utilized in energy conversion and storage as well as sensing applications.

14.
Nanoscale ; 14(8): 3013-3019, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35156987

RESUMEN

Copper indium sulfide quantum dots (CIS QDs) and their core-shell analogues (CIS@ZnS QDs) were functionalized with pyrene chromophores via a dihydrolipoamide bifunctional binding moiety: UV excitation of the pyrene chromophores resulted in sensitized emission of the CIS core because of an efficient energy transfer process; the core-shell hybrid system exhibits a 50% increased brightness when excited at 345 nm.

15.
Nanomaterials (Basel) ; 12(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35159878

RESUMEN

Plasma-assisted supersonic jet deposition (PA-SJD) is a precise technique for the fabrication of thin films with a desired nanostructured morphology. In this work, we used quadrupole mass spectrometry of the neutral species in the jet and the extensive characterization of TiO2 films to improve our understanding of the relationship between jet chemistry and film properties. To do this, an organo-metallic precursor (titanium tetra-isopropoxide or TTIP) was first dissociated using a reactive argon-oxygen plasma in a vacuum chamber and then delivered into a second, lower pressure chamber through a nozzle. The pressure difference between the two chambers generated a supersonic jet carrying nanoparticles of TiO2 in the second chamber, and these were deposited onto the surface of a substrate located few centimeters away from the nozzle. The nucleation/aggregation of the jet nanoparticles could be accurately tuned by a suitable choice of control parameters in order to produce the required structures. We demonstrate that high-quality films of up to several µm in thickness and covering a surface area of few cm2 can be effectively produced using this PA-SJD technique.

16.
Nanoscale ; 13(29): 12460-12465, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259700

RESUMEN

Confinement of multiple azobenzene chromophores covalently linked at the surface of luminescent silicon nanocrystals preserves the photoswitching behavior and modulates the nanocrystal polarity. Concomitantly, the thermal Z→E isomerization is strongly accelerated and the nanocrystal luminescence is reduced by an energy transfer process resulting in photosensitized E→Z isomerization.

17.
ACS Appl Mater Interfaces ; 12(39): 44017-44025, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32880164

RESUMEN

Humidity sensors have been gaining increasing attention because of their relevance for well-being. To meet the ever-growing demand for new cost-efficient materials with superior performances, graphene oxide (GO)-based relative humidity sensors have emerged recently as low-cost and highly sensitive devices. However, current GO-based sensors suffer from important drawbacks including slow response and recovery, as well as poor stability. Interestingly, reduced GO (rGO) exhibits higher stability, yet accompanied by a lower sensitivity to humidity due to its hydrophobic nature. With the aim of improving the sensing performances of rGO, here we report on a novel generation of humidity sensors based on a simple chemical modification of rGO with hydrophilic moieties, i.e., triethylene glycol chains. Such a hybrid material exhibits an outstandingly improved sensing performance compared to pristine rGO such as high sensitivity (31% increase in electrical resistance when humidity is shifted from 2 to 97%), an ultrafast response (25 ms) and recovery in the subsecond timescale, low hysteresis (1.1%), excellent repeatability and stability, as well as high selectivity toward moisture. Such highest-key-performance indicators demonstrate the full potential of two-dimensional (2D) materials when decorated with suitably designed supramolecular receptors to develop the next generation of chemical sensors of any analyte of interest.

18.
ACS Appl Mater Interfaces ; 12(34): 38019-38030, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32687700

RESUMEN

We investigated the photocatalytic behavior of gold nanoparticles supported on CeO2-TiO2 nanostructured matrixes in the CO preferential oxidation in H2-rich stream (photo-CO-PROX), by modifying the electronic band structure of ceria through addition of titania and making it more suitable for interacting with free electrons excited in gold nanoparticles through surface plasmon resonance. CeO2 samples with different TiO2 concentrations (0-20 wt %) were prepared through a slow coprecipitation method in alkaline conditions. The synthetic route is surfactant-free and environmentally friendly. Au nanoparticles (<1.0 wt % loading) were deposited on the surface of the CeO2-TiO2 oxides by deposition-precipitation. A benchmarking sample was also considered, prepared by standard fast coprecipitation, to assess how a peculiar morphology can affect the photocatalytic behavior. The samples appeared organized in a hierarchical needle-like structure, with different morphologies depending on the Ti content and preparation method, with homogeneously distributed Au nanoparticles decorating the Ce-Ti mixed oxides. The morphology influences the preferential photooxidation of CO to CO2 in excess of H2 under simulated solar light irradiation at room temperature and atmospheric pressure. The Au/CeO2-TiO2 systems exhibit much higher activity compared to a benchmark sample with a non-organized structure. The most efficient sample exhibited CO conversions of 52.9 and 80.2%, and CO2 selectivities equal to 95.3 and 59.4%, in the dark and under simulated sunlight, respectively. A clear morphology-functionality correlation was found in our systematic analysis, with CO conversion maximized for a TiO2 content equal to 15 wt %. The outcomes of this study are significant advancements toward the development of an effective strategy for exploitation of hydrogen as a viable clean fuel in stationary, automotive, and portable power generators.

19.
Dalton Trans ; 49(29): 10212-10223, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666964

RESUMEN

Hydrogen production via light-driven water splitting is a key process in the context of solar energy conversion. In this respect, the choice of suitable light-harvesting units appears as a major challenge, particularly as far as stability issues are concerned. In this work, we report on the use of CdTe/CdS QDs as photosensitizers for light-assisted hydrogen evolution in combination with a nickel bis(diphosphine) catalyst (1) and ascorbate as the sacrificial electron donor. QDs of different sizes (1.7-3.4 nm) and with different capping agents (MPA, MAA, and MSA) have been prepared and their performance assessed in the above-mentioned photocatalytic reaction. Detailed photophysical studies have been also accomplished to highlight the charge transfer processes relevant to the photocatalytic reaction. Hydrogen evolution is observed with remarkable efficiencies when compared to common coordination compounds like Ru(bpy)32+ (where bpy = 2,2'-bipyridine) as light-harvesting units. Furthermore, the hydrogen evolution performance under irradiation is strongly determined by the nature of the capping agent and the QD size and can be related to the concentration of the surface defects within the semiconducting nanocrystal. Overall, the present results outline how QDs featuring large quantum yields and long lifetimes are desirable to achieve sustained hydrogen evolution upon irradiation and that a precise control of the structural and photophysical properties thus appears as a major requirement towards profitable photocatalytic applications.

20.
Nanoscale ; 12(14): 7921-7926, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32232243

RESUMEN

Luminescent probes based on silicon nanocrystals (SiNCs) have many advantages for bioimaging compared to more conventional quantum dots: abundancy of silicon combined with its biocompatibility; tunability of the emission color of SiNCs in the red and NIR spectral region to gain deeper tissue penetration; long emission lifetimes of SiNCs (hundreds of µs) enabling time-gated acquisitions to avoid background noise caused by tissue autofluorescence and scattered excitation light. Here we report a new three-step synthesis, based on a low temperature thiol-ene click reaction that can afford SiNCs, colloidally stable in water, with preserved bright red and NIR photoluminescence (band maxima at 735 and 945 nm for nanocrystals with diameters of 4 and 5 nm, respectively) and long emission lifetimes. Their luminescence is insensitive to dioxygen and sensitive to pH changes in the physiological range, enabling pH sensing. In vivo studies demonstrated tumor accumulation, 48 hours clearance and a 3-fold improvement of the signal-to-noise ratio compared to steady-state imaging.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas/química , Silicio/química , Espectroscopía Infrarroja Corta/métodos , Agua/química , Animales , Línea Celular Tumoral , Química Clic , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Nanopartículas/metabolismo , Neoplasias/diagnóstico por imagen , Polietilenglicoles/química , Relación Señal-Ruido , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...