Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504132

RESUMEN

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Asunto(s)
Alcaloides , Sarcopenia , Humanos , Masculino , Ratones , Animales , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envejecimiento , Músculo Esquelético/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo
2.
Nat Aging ; 4(1): 7-9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191688
3.
Geroscience ; 46(2): 1789-1806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37924441

RESUMEN

The establishment of aging clocks highlighted the strong link between changes in DNA methylation and aging. Yet, it is not known if other epigenetic features could be used to predict age accurately. Furthermore, previous studies have observed a lack of effect of age-related changes in DNA methylation on gene expression, putting the interpretability of DNA methylation-based aging clocks into question. In this study, we explore the use of chromatin accessibility to construct aging clocks. We collected blood from 159 human donors and generated chromatin accessibility, transcriptomic, and cell composition data. We investigated how chromatin accessibility changes during aging and constructed a novel aging clock with a median absolute error of 5.27 years. The changes in chromatin accessibility used by the clock were strongly related to transcriptomic alterations, aiding clock interpretation. We additionally show that our chromatin accessibility clock performs significantly better than a transcriptomic clock trained on matched samples. In conclusion, we demonstrate that the clock relies on cell-intrinsic chromatin accessibility alterations rather than changes in cell composition. Further, we present a new approach to construct epigenetic aging clocks based on chromatin accessibility, which bear a direct link to age-related transcriptional alterations, but which allow for more accurate age predictions than transcriptomic clocks.


Asunto(s)
Cromatina , Epigénesis Genética , Humanos , Cromatina/genética , Envejecimiento/genética , Metilación de ADN , Perfilación de la Expresión Génica
4.
iScience ; 26(11): 108136, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876823

RESUMEN

Alterations of the microbiome are linked to increasingly common diseases such as obesity, allergy, and inflammatory bowel disease. Post-industrial lifestyles are thought to contribute to the gut microbiome alterations that cause or aggravate these diseases. Comparing communities across the industrialization spectrum can reveal associations between gut microbiome alterations and lifestyle and health, and help pinpoint which specific aspect of the post-industrial lifestyle is linked to microbiome alterations. Here, we compare the gut microbiomes of 60 mother and infant pairs from rural and urban areas of Senegal over two time points. We find that urban mothers, who were more frequently overweight, had different gut microbiome compositions than rural mothers, showing an expansion of Lachnospiraceae and Enterobacter. Urban infants, on the other hand, showed a delayed gut microbiome maturation and a higher susceptibility to infectious diseases. Thus, we identify new microbiome features associated with industrialization, whose association with disease may be further investigated.

5.
Front Aging ; 4: 1323194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322248

RESUMEN

Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via in vivo partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined. To understand whether cellular reprogramming can ameliorate DNA damage, we created a reprogrammable accelerated aging mouse model with an ERCC1 mutation. Importantly, using enhanced partial reprogramming by combining small molecules with the Yamanaka factors, we observed potent reversion of DNA damage, significant upregulation of multiple DNA damage repair processes, and restoration of the epigenetic clock. In addition, we present evidence that pharmacological inhibition of ALK5 and ALK2 receptors in the TGFb pathway are able to phenocopy some benefits including epigenetic clock restoration suggesting a role in the mechanism of rejuvenation by partial reprogramming.

6.
Bioinform Adv ; 2(1): vbac092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699399

RESUMEN

Motivation: Recently, several computational modeling approaches, such as agent-based models, have been applied to study the interaction dynamics between immune and tumor cells in human cancer. However, each tumor is characterized by a specific and unique tumor microenvironment, emphasizing the need for specialized and personalized studies of each cancer scenario. Results: We present MAST, a hybrid Multi-Agent Spatio-Temporal model which can be informed using a data-driven approach to simulate unique tumor subtypes and tumor-immune dynamics starting from high-throughput sequencing data. It captures essential components of the tumor microenvironment by coupling a discrete agent-based model with a continuous partial differential equations-based model.The application to real data of human colorectal cancer tissue investigating the spatio-temporal evolution and emergent properties of four simulated human colorectal cancer subtypes, along with their agreement with current biological knowledge of tumors and clinical outcome endpoints in a patient cohort, endorse the validity of our approach. Availability and implementation: MAST, implemented in Python language, is freely available with an open-source license through GitLab (https://gitlab.com/sysbiobig/mast), and a Docker image is provided to ease its deployment. The submitted software version and test data are available in Zenodo at https://dx.doi.org/10.5281/zenodo.7267745. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...