Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057323

RESUMEN

Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1ß) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38139798

RESUMEN

Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18-22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity.

3.
Antioxidants (Basel) ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759982

RESUMEN

In our previous research, we demonstrated that honey and its biomimetic natural deep eutectic solvent (NaDES) modulate the antioxidant activity (AOA) of the raspberry extract (RE). In this study, we evaluated the AOA behaviour of the mixture honey/NaDES-honeysuckle (Lonicera caprifolium, LFL) extract and compared it with the mixture honey/NaDES-RE. These two extracts have similar major flavonoids and hydroxycinnamic acid compounds but differ in their total content and the presence of anthocyanins in RE. Therefore, it was of interest to see if the modulation of the LFL polyphenols by honey/NaDES was similar to that of RE. We also evaluated the prebiotic activity of these mixtures and individual components on Limosilactobacillus reuteri DSM 20016. Although honey/NaDES modulated the AOA of both extracts, from synergism to antagonism, the modulation was different between the two extracts for some AOA activities. Honey/NaDES mixtures enriched with LFL and RE did not show significant differences in bacterial growth stimulation. However, at a concentration of 45 mg/mL, the honey -LFL mixture exhibited a higher effect compared to the honey-RE mixture. The antioxidant and prebiotic properties of mixtures between honey and polyphenol-rich extracts are determined by multiple interactions in complex chemical systems.

4.
Antioxidants (Basel) ; 12(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37760014

RESUMEN

Biogenic selenium nanoparticles (SeNPs) have been shown to exhibit increased bioavailability. Fermentation of pollen by a symbiotic culture of bacteria and yeasts (SCOBY/Kombucha) leads to the release of pollen content and enhances the prebiotic and probiotic effects of Kombucha. The aim of this study was to fortify Kombucha beverage with SeNPs formed in situ by Kombucha fermentation with pollen. Response Surface Methodology (RSM) was used to optimize the biosynthesis of SeNPs and the pollen-fermented Kombucha beverage. SeNPs were characterized by Transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX), Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), and Zeta potential. The pollen-fermented Kombucha beverage enriched with SeNPs was characterized by measuring the total phenolic content, antioxidant activity, soluble silicon, saccharides, lactic acid, and the total content of Se0. The polyphenols were identified by liquid chromatography-mass spectrometry (LC-MS). The pollen and the bacterial (nano)cellulose were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), FTIR, and X-Ray diffraction (XRD). We also assessed the in vitro biocompatibility in terms of gingival fibroblast viability and proliferation, as well as the antioxidant activity of SeNPs and the pollen-fermented Kombucha beverage enriched with SeNPs. The results highlight their increased biological performance in this regard.

5.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38256857

RESUMEN

Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)-SeNPsSb-in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF.

6.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296517

RESUMEN

Chiral bis(TTF) diamides have been obtained in good yields (54-74%) from 1,2-cyclohexane-diamine and the corresponding TTF acyl chlorides. The (R,R)-1 and (S,S)-1 enantiomers have been characterized by circular dichroism and the racemic form by single-crystal X-ray diffraction. The neutral racemic bis(TTF)-diamide shows the formation of a pincer-like framework in the solid state, thanks to the intramolecular S···S interactions. The chemical oxidation in a solution using FeCl3 provides stable oxidized species, while the electrocrystallization experiments provided radical cation salts. In particular, single-crystal resistivity measurements on the racemic donor with AsF6- as a counterion demonstrate semiconductor behavior in this material. The DFT and TD-DFT calculations support the structural and chiroptical features of these new chiral TTF donors.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35627427

RESUMEN

Many western societies are confronted with issues in planning and adapting their health policies due to an ageing population living alone. The "NOt Alone at Home-NOAH" project aimed to involve older people in the Agile co-creation of services for a collaborative monitoring and awareness notification for remote caregivers. Our research aim was to create a scalable and modern information system that permitted a non-invasive monitorization of the users for keeping their caregivers up to date. This was done via a cloud IoT (Internet of Things), which collects and processes data from its domotic sensors. The notifications generated by the system, via the three applications we developed (NOAH/NOAH Care/Admin Centre), offer caregivers an easy way of detecting changes in the day-to-day behaviour and activities of their patients, giving them time to intervene in case of abnormal activity. Such an approach would lead to a longer and more independent life for the older people. We evaluated our system by conducting a year-long pilot-study, offering caregivers constant information from the end-users while still living independently. For creating our pilot groups, we used the ABAS (Adaptive Behaviour Assessment System) II, which we then matched with the pre-profiled Behavioral Analysis Models of older people familiar with modern communication devices. Our results showed a low association between daily skills and the sensors we used, in contrast with the results from previous studies done in this field. Another result was efficiently capturing the behaviour changes that took place due to the COVID-19 Lockdown measures.


Asunto(s)
COVID-19 , Dispositivos de Autoayuda , Anciano , COVID-19/epidemiología , Cuidadores , Control de Enfermedades Transmisibles , Humanos , Proyectos Piloto
8.
Nutrients ; 10(10)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249054

RESUMEN

The bioavailability of pollen bioactive compounds for humans is limited. In this study, our aim was to enhance the health-related benefits of pollen by fermentation with a Kombucha/SCOBY (symbiotic culture of bacteria and yeasts) consortium. We performed the fermentation of pollen suspended from the beginning with SCOBY on sweetened green tea or on Kombucha vinegar, by adding pollen after 20 days of Kombucha fermentation. We analyzed: formation of bioactive compounds (anti-oxidant polyphenols, soluble silicon, hydroxy-acids, short chain fatty acids-SCFA); parameters related to Kombucha fermentation (dynamics of lactic acid bacteria-LAB, formation of organic acids, soluble sugar evolution on Kombucha vinegar); the influence of Kombucha fermentation on pollen morphology and ultrastructure; in vitro cytotoxic and antitumoral effects of the Kombucha fermented pollen. The pollen addition increases LAB proportion in the total number of SCOBY microbial strains. SEM images highlight the adhesion of the SCOBY bacteria to pollen. Ultrastructural analysis reveals the release of the pollen content. The content of bioactive compounds (polyphenols, soluble silicon species and SCFA) is higher in the fermented pollen and the product shows a moderate antitumoral effect on Caco-2 cells. The health benefits of pollen are enhanced by fermentation with a Kombucha consortium.


Asunto(s)
Antioxidantes/metabolismo , Ácidos Grasos Volátiles/metabolismo , Té de Kombucha , Lactobacillaceae/metabolismo , Polen , Silicio/metabolismo , , Adenocarcinoma/prevención & control , Animales , Antineoplásicos/metabolismo , Adhesión Bacteriana , Células CACO-2 , Línea Celular Tumoral , Neoplasias del Colon/prevención & control , Medios de Cultivo , Composición de Medicamentos/métodos , Fermentación , Microbiología de Alimentos , Humanos , Té de Kombucha/microbiología , Ratones , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , Polen/microbiología , Polen/ultraestructura , Polifenoles/metabolismo , Azúcares/metabolismo , Té/metabolismo , Té/microbiología , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA