Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39109991

RESUMEN

The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells. Electrochemical characterization shows remarkable oxygen reduction reaction (fuel cell mode) and oxygen evolution activity (electrolysis mode) in comparison with state-of-the-art bulk electrodes, combined with outstanding long-term stability at operational temperatures of 700 °C. The disordered nanostructure was implemented as a standalone oxygen electrode on commercial anode-supported cells, resulting in high electrical output in fuel cell and electrolysis mode for active layer thicknesses of only 200 nm (>95% decrease in critical raw materials with respect to conventional cathodes). The cell was operated for over 300 h in fuel cell mode displaying excellent stability. Our findings unlock the hidden potential of advanced thin-film technologies for obtaining high-performance disordered electrodes based on nanocomposite self-assembly combining long durability and minimized use of critical raw materials.

2.
Chem Mater ; 36(12): 6144-6153, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947977

RESUMEN

LiMn2O4 (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of µm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features. VEPALS offers atomic-scale insights, uncovering cationic defects and subnanometer pores that tend to collapse with cycling. TERS, operating in the nanometric range at the surface, captured the presence of Mn3O4 and its dissolution with cycling, elucidating dynamic changes during operation. Additionally, TERS highlights the accumulation of SO4 2- at grain boundaries. Macro-Raman spectroscopy focuses on the micrometer scale, depicting small changes in the cathode's long-range order, suggesting a slow but progressive loss of crystalline quality under operation. Integrating these techniques provides a comprehensive assessment of LMO cathode stability in aqueous electrolytes, offering multifaceted insights into phase and defect evolution that can help to rationalize the origin of such stability when compared with conventional organic electrolytes. Our findings advance the understanding of LMO behavior in aqueous environments and provide guidelines for its development for next-generation LIBs.

3.
Nanoscale Horiz ; 9(7): 1200-1210, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38767571

RESUMEN

Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphological, and thermoelectrical evaluation of the selfsame individual bottom-up integrated nanowire employing an innovative micro-machined device compatible with transmission electron microscopy whose fabrication is also discussed. Thanks to a design that arranges the nanostructured samples completely suspended, detailed structural analysis using transmission electron microscopy is enabled. In the same device architecture, electrical collectors and isolated heaters are available at both ends of the trenches for thermoelectrical measurements of the nanowire i.e. thermal and electrical properties simultaneously. This allows the direct measurement of the nanowire power factor. Furthermore, micro-Raman thermometry measurements were performed to evaluate the thermal conductivity of the same suspended silicon nanowire. A thermal profile of the self-heating nanowire could be spatially resolved and used to compute the thermal conductivity. In this work, heavily-doped silicon nanowires were grown on this microdevices yielding a thermal conductivity of 30.8 ± 1.7 W Km-1 and a power factor of 2.8 mW mK-2 at an average nanowire temperature of 400 K. Notably, no thermal contact resistance was observed between the nanowire and the bulk, confirming the epitaxial attachment. The device presented here shows remarkable utility in the challenging thermoelectrical characterization of integrated nanostructures and in the development of multiple devices such as thermoelectric generators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA