Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 4): 708-716, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255023

RESUMEN

Differential deposition by DC magnetron sputtering was applied to correct for figure errors of X-ray mirrors to be deployed on low-emittance synchrotron beamlines. During the deposition process, the mirrors were moved in front of a beam-defining aperture and the required velocity profile was calculated using a deconvolution algorithm. The surface figure was characterized using conventional off-line visible-light metrology instrumentation (long trace profiler and Fizeau interferometer) before and after the deposition. WSi2 was revealed to be a promising candidate material since it conserves the initial substrate surface roughness and limits the film stress to acceptable levels. On a 300 mm-long flat Si mirror the average height errors were reduced by a factor of 20 down to 0.2 nm root mean square. This result shows the suitability of WSi2 for differential deposition. Potential promising applications include the upgrade of affordable, average-quality substrates to the standards of modern synchrotron beamlines.


Asunto(s)
Algoritmos , Sincrotrones , Rayos X , Radiografía
3.
J Synchrotron Radiat ; 29(Pt 2): 581-590, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254323

RESUMEN

ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.


Asunto(s)
Lentes , Sincrotrones , Cristalografía por Rayos X , Recolección de Datos , Sustancias Macromoleculares/química
4.
J Synchrotron Radiat ; 28(Pt 5): 1423-1436, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475290

RESUMEN

Finite-element analysis is used to study the thermal deformation of a multilayer mirror due to the heat load from the undulator beam at a low-emittance synchrotron source, specifically the ESRF-EBS upgrade beamline EBSL-2. The energy bandwidth of the double-multilayer monochromator is larger than that of the relevant undulator harmonic, such that a considerable portion of the heat load is reflected. Consequently, the absorbed power is non-uniformly distributed on the surface. The geometry of the multilayer substrate is optimized to minimize thermally induced slope errors. We distinguish between thermal bending with constant curvature that leads to astigmatic focusing or defocusing and residual slope errors. For the EBSL-2 system with grazing angles θ between 0.2 and 0.4°, meridional and sagittal focal lengths down to 100 m and 2000 m, respectively, are found. Whereas the thermal bending can be tuned by varying the depth of the `smart cut', it is found that the geometry has little effect on the residual slope errors. In both planes they are 0.1-0.25 µrad. In the sagittal direction, however, the effect on the beam is drastically reduced by the `foregiveness factor', sin(θ). Optimization without considering the reflected heat load yields an incorrect depth of the `smart cut'. The resulting meridional curvature in turn leads to parasitic focal lengths of the order of 100 m.

5.
J Synchrotron Radiat ; 28(Pt 1): 91-103, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399557

RESUMEN

The performance of a liquid-nitrogen-cooled high-heat-load monochromator with a horizontal scattering plane has been analysed, aiming to preserve the high quality of the X-ray beam in the vertical plane for downstream optics. Using finite-element analysis, height profiles of the crystal surface for various heat loads and the corresponding slope errors in the meridional and sagittal planes were calculated. Then the angular distortions of the reflected beam in both meridional and sagittal planes were calculated analytically and also modelled by ray tracing, revealing a good agreement of the two approaches. The results show that with increasing heat load in the crystal the slope errors of the crystal surface reach their smallest values first in the sagittal and then in the meridional plane. For the considered case of interest at a photon energy of 14.412 keV and the Si(111) reflection with a Bragg angle of 7.88°, the angular distortions of the reflected beam in the sagittal plane are an order of magnitude smaller than in the meridional one. Furthermore, they are smaller than the typical angular size of the beam source at the monochromator position. For a high-heat-load monochromator operating in the horizontal scattering plane, the sagittal angular distortions of the reflected beam appear in the vertical plane. Thus, such an instrument perfectly preserves the high quality of the X-ray beam in the vertical plane for downstream optics. Compared with vertical scattering, the throughput of the monochromatic beam with the horizontal scattering plane is reduced by only 3.3% for the new EBS source, instead of 34.3% for the old ESRF-1 machine. This identifies the horizontal-scattering high-heat-load monochromator as a device essentially free of the heat-load effects in the vertical plane and without significant loss in terms of throughput.

6.
J Phys Condens Matter ; 33(12)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33339007

RESUMEN

This work reports about a novel approach for investigating surface processes during the early stages of galvanic corrosion of stainless steelin situby employing ultra-thin films and synchrotron x-radiation. Characterized by x-ray techniques and voltammetry, such films, sputter deposited from austenitic steel, were found representing useful replicas of the target material. Typical for stainless steel, the surface consists of a passivation layer of Fe- and Cr-oxides, a couple of nm thick, that is depleted of Ni. Films of ≈4 nm thickness were studiedin situin an electrochemical cell under potential control (-0.6 to +0.8 V vs Ag/AgCl) during exposure to 0.1 M KCl. Material transport was recorded with better than 1/10 monolayer sensitivity by x-ray spectroscopy. Leaching of Fe was observed in the cathodic range and the therefor necessary reduction of Fe-oxide appears to be accelerated by atomic hydrogen. Except for minor leaching, reduction of Ni, while expected from Pourbaix diagram, was not observed until at a potential of about +0.8 V Cr-oxide was removed from the steel film. After couple of minutes exposure at +0.8 V, the current in the electrochemical cell revealed a rapid pitting event that was simultaneously monitored by x-ray spectroscopy. Continuous loss of Cr and Ni was observed during the induction time leading to the pitting, suggesting a causal connection with the event. Finally, a spectroscopic image of a pit was recordedex situwith 50 nm lateral and 1 nm depth resolution by soft x-ray scanning absorption microscopy at the Fe L2,3-edges by using a 80 nm film on a SiN membrane, which is further demonstrating the usefulness of thin films for corrosion studies.

7.
J Synchrotron Radiat ; 27(Pt 2): 515-528, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153293

RESUMEN

ID15A is a newly refurbished beamline at the ESRF devoted to operando and time-resolved diffraction and imaging, total scattering and diffraction computed tomography. The beamline is optimized for rapid alternation between the different techniques during a single operando experiment in order to collect complementary data on working systems. The high available energy (up to 120 keV) means that even bulky and highly absorbing systems may be studied. The beamline is equipped with optimized focusing optics and a photon-counting CdTe pixel detector, allowing for both unprecedented data quality at high energy and for very rapid triggered experiments. A large choice of imaging detectors and ancillary probes and sample environments is also available.

8.
J Synchrotron Radiat ; 26(Pt 6): 1872-1878, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721729

RESUMEN

The surface figure error of a hard X-ray mirror was improved by combining differential deposition and off-line metrology tools. Thin Cr layers were deposited on flat substrates by DC magnetron sputtering. The substrates were moved in front of a beam-defining aperture. The required velocity profile was calculated using a deconvolution algorithm. The Cr thickness profiles were measured directly using hard X-ray reflectivity data. The surface figure was characterized using conventional visible-light metrology instrumentation (long trace profiler) before and after the deposition. The method converges quickly, and after two iterations the mirror surface figure had improved by a factor of 7. The surface roughness evolves with increasing Cr thickness and deteriorates the quality of subsequent multilayer coatings. The mirror curvature can change upon coating, which complicates the interpretation of the surface metrology data. In this context, the role of layer stress is discussed. Potential improvements of the process are also proposed.

9.
J Synchrotron Radiat ; 26(Pt 2): 571-584, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855270

RESUMEN

The ID01 beamline has been built to combine Bragg diffraction with imaging techniques to produce a strain and mosaicity microscope for materials in their native or operando state. A scanning probe with nano-focused beams, objective-lens-based full-field microscopy and coherent diffraction imaging provide a suite of tools which deliver micrometre to few nanometre spatial resolution combined with 10-5 strain and 10-3 tilt sensitivity. A detailed description of the beamline from source to sample is provided and serves as a reference for the user community. The anticipated impact of the impending upgrade to the ESRF - Extremely Brilliant Source is also discussed.

10.
J Synchrotron Radiat ; 22(2): 317-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25723932

RESUMEN

Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

11.
Opt Lett ; 38(23): 5126-9, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24281526

RESUMEN

We present numerical simulations optimizing the layer shapes of curved focusing x-ray multilayer mirrors deployed at synchrotron radiation facilities using a wave-optical model. The confocal elliptical shapes of the inner layers are corrected for refraction based on the modified Bragg law. Simulated wave amplitudes are further propagated to the focal region, promising nanometer focusing.

12.
J Synchrotron Radiat ; 20(Pt 4): 660-4, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765312

RESUMEN

Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.


Asunto(s)
Proteínas/química , Dispersión del Ángulo Pequeño , Soluciones
13.
Opt Lett ; 37(17): 3705-7, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22940997

RESUMEN

We have derived a wave-optical model of curved nanofocusing x-ray multilayer mirrors used at synchrotron radiation sources, using a Takagi-Taupin-like approach. In a first approximation, the individual layers are assumed to be confocal elliptical. This assumption leads to a convenient spatial description in elliptical coordinates. As a first optimization, we study a rotation-like modification and compare numerical simulations to established results for planar multilayers.

14.
J Synchrotron Radiat ; 17(1): 107-18, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20029119

RESUMEN

The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.


Asunto(s)
Biopolímeros/química , Cristalografía por Rayos X/instrumentación , Lentes , Sincrotrones/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Francia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Appl Opt ; 48(35): 6684-91, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20011008

RESUMEN

Soft-x-ray Bragg reflection from two Ru/B(4)C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 - delta + ibeta close to the boron K edge (approximately 188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B(4)C and various boron oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...