Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 10(11)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171833

RESUMEN

The aim of the study was to determine the effect of the number and stage of lactations, time of day and calving season of cows on milk yield from a single milking, average milking time, average milking per minute, daily milking frequency and the relationship between the tested parameters of quarter milking. The study included a herd of 65 Polish Holstein Friesian black and white cows used in a free-range barn located in south-west Poland. The animals were kept in proper welfare conditions, fed using the partly mixed ration (PMR) method on the feeding table. The milk was obtained using the Lely-Astronaut A4 Automatic Milking System (AMS). The animals on the dairy cattle farm were used in the range from the first to the seventh lactation, i.e., at the age of 2.0 to approximately 10 years. In this study, the amount of milk yielded from the hind quarters was statistically significantly higher (p < 0.05) than the trait determined for the front quarters. At the same time, the milk flow rate was statistically significantly higher (p < 0.05) in the front quarters compared to the rear quarters. The daily milk yield in right rear (RR) and left rear (LR) hind quarters was higher by 1.0 kg of milk, respectively, than in right front (RF) and left front (LF) fore quarters. The milking time of the RR and LR hind quarters during the day was longer by 104.9 and 128.8 s, respectively, than the RF and LF fore quarters. The milking speed of the RR and LR hind quarters during the day was lower by 0.2 and 1.12 g/s, respectively, than in the RF and LF fore quarters. The values of the correlation between the yields of milk and its components obtained in this study were high and positive. Correlations between the milk yield and the content of its components were negative. The obtained results confirmed that the natural physiological variability of the udder and teats structure, as well as the course of lactation, significantly affects the individual composition and milk flow during milking. The ability to regulate the milk flow by adjusting the appropriate negative pressure during the robot's operation, in the observed variability of individual lobes of the mammary gland, increases the efficiency of milking and, as a result, reduces the risk of mastitis in cows.

2.
Acta Vet Scand ; 59(1): 58, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28893310

RESUMEN

BACKGROUND: There is some controversy about the extent of changes in different sperm cell features in stored boar semen, especially regarding the potential role of the DNA fragmentation assay for assessment of sperm fertilizing ability. The aim of this study was to assess the effect of time of storage and the dynamic changes in sperm cell characteristics in normospermic boar semen stored in long-term extender, in order to determine the susceptibility to damage of particular structures of spermatozoa during cooling and storage at 17 °C for 240 h post collection. The study included five ejaculates from each of seven boars of the Polish Large White breed (n = 35 ejaculates). The sperm characteristics were assessed using a flow cytometer and a computer assisted sperm analyzer on samples at 0, 48, 96, 168 and 240 h post collection. RESULTS: The sperm chromatin structure assay (SCSA) showed a significant abrupt increase (P < 0.01) in the DNA fragmentation index (%DFI) after 48 h of semen storage with only subtle changes thereafter, not exceeding 5% on average after 240 h of storage. The use of a combination of SYBR-14/PI stains did not reveal any significant changes in the percentage of live sperm cells up to 168 h of semen storage. A significant (P < 0.01) decrease in the percentage of live spermatozoa with intact acrosomes was observed after prolonged semen storage (168 h). A significant and progressive decrease in sperm motility was recorded during the whole period of semen storage. CONCLUSIONS: Storage of boar semen extended in long-term diluent at 17 °C for 48 h initially induced a decrease in the integrity of sperm DNA. This suggests that the structure of boar sperm DNA is susceptible to damage, especially during semen extension and at the beginning of sperm storage. These findings support the opinion that the SCSA test has only a low potential for routine assessment of boar semen preserved in the liquid state and for assessment of sperm quality changes during 10 days of semen preservation. Remarkably, the integrity of acrosomes and plasma membranes remained nearly unchanged for 7 days.


Asunto(s)
Fragmentación del ADN , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides/fisiología , Sus scrofa/fisiología , Animales , Masculino , Preservación de Semen/métodos , Temperatura , Factores de Tiempo
4.
Acta Vet Scand ; 57: 84, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26628215

RESUMEN

The immune system during the periparturient period is impaired. At this time the most important factor causing immune-suppression in highly productive cows is metabolic stress resulting from hormonal and metabolic fluctuations, a negative energy balance, shortage of proteins, minerals and vitamins which are required to meet the demands of the fetus as well as the onset of lactation. This stress can activate the hypothalamic-pituitary-adrenocortical axis (HPA), which results in increase plasma corticosteroids. As a result, the cortisol concentration during the periparturient period increases by several folds particularly on the day of calving. Cortisol is a powerful immune-suppressive agent. During stress, this hormone causes depression of the leukocyte proliferation and their functions. Decreased phagocytosis of neutrophils, decreased cytotoxic ability of lymphocytes, as well as depressed activity of their cytokines, make it impossible for the normal, efficient maternal immune recognition and rejection of fetal membranes (as a foreign, allogeneic tissue expressed fetal antigens-MHC class I proteins by trophoblast cells) and finally results in their retention in cows. The metabolic periparturient stress also activates production of catecholamines, especially adrenalin. Adrenalin activates adrenoreceptors of the myometrium and then causes hypotony or atony of the uterus. Thus, cortisol and adrenalin inhibit rejection and expulsion of fetal membranes and cause their retention. These mechanisms of retained placenta (RP) often have a metabolic etiology and occur in herds, where important infectious diseases causing placentitis are absent or prevented. The aim of this article is to show the fundamental mechanisms occurring during periparturient stress and the accompanied immune-suppression in cows, as well as their consequences in relation to RP. The paper also gives examples of the symptomatic prevention of RP in cows caused by metabolic and immune suppressive factors. The prevention of RP was carried out using drugs which inhibit the activity of cortisol or adrenalin in dairy cows during calving.


Asunto(s)
Tolerancia Inmunológica , Periodo Periparto/fisiología , Retención de la Placenta/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos , Industria Lechera , Femenino , Periodo Periparto/inmunología , Retención de la Placenta/inmunología , Retención de la Placenta/metabolismo , Retención de la Placenta/prevención & control , Embarazo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA