Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 172(18): 4443-4453, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26075703

RESUMEN

BACKGROUND AND PURPOSE: Diabetic patients are at an increased risk of cardiovascular disease, in part due to inflammation and oxidative stress. These two pathological mechanisms also affect other organs and cells including the kidneys and progenitor cells. Angiotensin-(1-7) [Ang-(1-7)] has previously been shown to counterbalance pathological effects of angiotensin II, including inflammation and oxidative stress. The aim of this study was to investigate the effects of short-term (2 weeks) Ang-(1-7) treatment on cardiovascular and renal function in a mouse model of type 2 diabetes (db/db). EXPERIMENTAL APPROACH: Eight- to nine-week-old db/db mice were administered either vehicle, Ang-(1-7) alone, or Ang-(1-7) combined with an inhibitor (losartan, PD123319, A-779, L-NAME or icatibant) daily for 14 days. KEY RESULTS: An improvement in physiological heart function was observed in Ang-(1-7)-treated mice. Ang-(1-7) also reduced cardiomyocyte hypertrophy, fibrosis and inflammatory cell infiltration of the heart tissue and increased blood vessel number. These changes were blocked by antagonists of the MAS1, AT2 and bradykinin receptors and inhibition of NO formation. Treatment with Ang-(1-7) reduced glomerular damage and oxidative stress in kidney tissue. Bone marrow and circulating endothelial progenitors, as well as bone marrow mesenchymal stem cells, were increased in mice treated with Ang-(1-7). CONCLUSIONS AND IMPLICATIONS: Short-term Ang-(1-7) treatment of young db/db mice improved heart function and reduced kidney damage. Treatment also improved bone marrow and circulating levels of endothelial and mesenchymal stem cells. All of this may contribute to improved cardiovascular and renal function.

2.
Endocrinology ; 153(5): 2189-97, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22434085

RESUMEN

Diabetics have an increased risk of developing cardiovascular disease, in part due to oxidative stress, resulting in endothelial nitric oxide synthase (eNOS) dysfunction. Studies have demonstrated that angiotensin-(1-7) [Ang-(1-7)] can activate eNOS activity. Because the bone marrow is a primary source of a number of progenitors important in physiological homeostasis and healing, the goal of this study was to evaluate the in vivo effects of Ang-(1-7) treatment on oxidative stress and the ensuing nitrative stress in diabetic bone marrow and its potential pathways. BKS.Cg-Dock7(m) +/+ Lepr(db)/J mice and their heterozygous controls were administered Ang-(1-7) alone or combined with A-779, losartan, PD123,319, nitro-l-arginine methyl ester, or icatibant sc for 14 d. The bone marrow was then collected to measure nitric oxide levels, eNOS phosphorylation, and expression of nitric oxide synthase, superoxide dismutase, and p22-phox. Nitric oxide levels in the bone marrow were significantly decreased in diabetic mice, and Ang-(1-7) treatment was able to significantly increase these measures (P < 0.01). This effect was blocked by the coadministration of PD123,319, A-779, nitro-l-arginine methyl ester, and icatibant. In addition, Ang-(1-7) treatment reversed the paradoxical increase in eNOS and neuronal nitric oxide synthase expression and decreased the phosphorylation of eNOS at Thr495 seen in diabetic mice. Ang-(1-7) also reversed diabetes-induced production of reactive oxygen species by decreasing p22-phox expression and increasing superoxide dismutase 3 expression, leading to a significant reduction in 3-nitrotyrosine formation in diabetic bone marrow (P < 0.05). Our findings demonstrate that Ang-(1-7) administration decreases diabetes-induced oxidative stress in the bone marrow and modifies pathways involved in eNOS dysfunction.


Asunto(s)
Angiotensina I/farmacología , Médula Ósea/efectos de los fármacos , Diabetes Mellitus/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Animales , Médula Ósea/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...