Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 205: 117709, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601358

RESUMEN

This study aimed to determine the reliability of the double-clustering method to understand the spatial association and distribution of major and minor constituents in the groundwater of an arid endorheic basin in central Mexico (Comarca Lagunera Region). The results of the double-clustering approach were compared with well-known spatial statistics such as spatial autocorrelations (Moran index) and the local indicator of spatial association (LISA). Fifty-five groundwater samples were collected from diverse wells within the basin, and the major ions, metalloids, and trace elements were determined. Overall, the double-clustering analysis was an effective tool for identifying lithogenic/anthropogenic processes occurring in the basin and for establishing zones with high or low abundance of major ions and trace elements, even where processes affecting the groundwater quality were spatially dispersed. Although 89% of the samples showed As higher than the threshold value of 10 µg/L proposed by the World Health Organization for drinking water, both the double-clustering and LISA analyses identified As hotspots in the alluvial aquifer, where the extraction of deeper and warmer groundwater might promote the concomitant release of the metalloids As, Sb, and Ge and the trace elements V and W. Similarly, both statistical analyses identified mountainous sectors where the weathering of silicates and carbonates plays a key role in the abundance of HCO3-, Ga, and Ba. However, the LISA analysis failed to identify hotspots of carbonate-derived elements such as Ca, Mg, Sr, and U and silicate-derived elements such as Ca, Mg, K, Sr, Rb, Cs, Pb, Ni, and Y. Otherwise, the double-clustering analysis clearly defined high- and low-concentration zones for all these elements in the study region. Unlike the LISA analysis, the double-clustering approach was also successful in determining alluvial areas with high concentrations of Si and Ti and areas where the concentrations of Na, Cl-, SO42-, NO3-, B, Li, Cu, Re, and Se in groundwater were elevated, increasing the groundwater salinity. Overall, this study demonstrated that the double-clustering is an easy-to-apply approach, capable of visualizing disperse zones where specific anthropogenic processes may threaten the groundwater quality.


Asunto(s)
Agua Subterránea , Metaloides , Oligoelementos , Contaminantes Químicos del Agua , Análisis por Conglomerados , Monitoreo del Ambiente , México , Reproducibilidad de los Resultados , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 198: 510-521, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29427952

RESUMEN

The Mezquital Valley system is the world's oldest and largest example with regard to use of untreated wastewater for agricultural irrigation. Because of the artificial high recharge associated with the Mezquital Valley aquifers, groundwater is extracted for human consumption, and there are plans to use this groundwater as a water resource for Mexico City. Thus, this study analyzed 218 organic micro-contaminants in wastewater, springs, and groundwater from Mezquital Valley. Five volatile organic compounds (VOCs) and nine semi-volatile organic compounds (SVOCs) were detected in the wastewater used for irrigation. Only two SVOCs [bis-2-(ethylhexyl) phthalate and dibutyl phthalate] were detected in all the wastewater canals and groundwater sources, whereas no VOCs were detected in groundwater and springs. Of the 118 pharmaceutically active compounds (PhACs) and 7 reproductive hormones measured, 65 PhACs and 3 hormones were detected in the wastewater. Of these, metformin, caffeine, and acetaminophen account for almost sixty percent of the total PhACs in wastewater. Nevertheless, 23 PhACs were detected in groundwater sources, where the majority of these compounds have low detection frequencies. The PhACs sulfamethoxazole, N,N-diethyl-meta-toluamide, carbamazepine, and benzoylecgonine (primary cocaine metabolite) were frequently detected in groundwater, suggesting that although the soils act as a filter adsorbing and degrading the majority of the organic pollutant content in wastewater, these PhACs still reach the aquifer. Therefore, the presence of these PhACs, together with the high levels of the endocrine disruptor bis-2-(ethylhexyl) phthalate, indicate that water sources derived from the recharge of the studied aquifers may pose a risk to consumer health.


Asunto(s)
Agua Subterránea/análisis , Preparaciones Farmacéuticas/análisis , Compuestos Orgánicos Volátiles/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Riego Agrícola , Dibutil Ftalato/análisis , Dietilhexil Ftalato/análisis , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Agua Subterránea/química , Humanos , México , Suelo/química , Recursos Hídricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA