Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 294(28): 10773-10788, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31152064

RESUMEN

Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.


Asunto(s)
Glomérulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Clatrina/metabolismo , Embrión no Mamífero/metabolismo , Endocitosis , Humanos , Glomérulos Renales/ultraestructura , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Morfolinos/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Podocitos/citología , Podocitos/metabolismo , Pez Cebra/crecimiento & desarrollo
2.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L150-L156, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982736

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa colonizes the lungs of susceptible individuals by deploying virulence factors targeting host defenses. The secreted factor Cif (cystic fibrosis transmembrane conductance regulator inhibitory factor) dysregulates the endocytic recycling of CFTR and thus reduces CFTR abundance in host epithelial membranes. We have postulated that the decrease in ion secretion mediated by Cif would slow mucociliary transport and decrease bacterial clearance from the lungs. To test this hypothesis, we explored the effects of Cif in cultured epithelia and in the lungs of mice. We developed a strategy to interpret the "hurricane-like" motions observed in reconstituted cultures and identified a Cif-mediated decrease in the velocity of mucus transport in vitro. Presence of Cif also increased the number of bacteria recovered at two time points in an acute mouse model of pneumonia caused by P. aeruginosa. Furthermore, recent work has demonstrated an inverse correlation between the airway concentrations of Cif and 15-epi-lipoxin A4, a proresolving lipid mediator important in host defense and the resolution of pathogen-initiated inflammation. Here, we observe elevated levels of 15-epi-lipoxin A4 in the lungs of mice infected with a strain of P. aeruginosa that expresses only an inactive form of cif compared with those mice infected with wild-type P. aeruginosa. Together these data support the inclusion of Cif on the list of virulence factors that assist P. aeruginosa in colonizing and damaging the airways of compromised patients. Furthermore, this study establishes techniques that enable our groups to explore the underlying mechanisms of Cif effects during respiratory infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bronquios/patología , Células Epiteliales/patología , Neumonía/etiología , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/metabolismo , Animales , Transporte Biológico , Bronquios/enzimología , Bronquios/microbiología , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/enzimología , Células Epiteliales/microbiología , Humanos , Lipoxinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Depuración Mucociliar , Neumonía/metabolismo , Neumonía/patología , Infecciones por Pseudomonas/microbiología
3.
J Antimicrob Chemother ; 70(1): 160-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25213272

RESUMEN

OBJECTIVES: Chelating iron may be a promising new therapy to eliminate Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis (CF) patients. Here, we investigate whether ALX-109 [a defined combination of an investigational drug containing lactoferrin (an iron-binding glycoprotein) and hypothiocyanite (a bactericidal agent)], alone and in combination with tobramycin or aztreonam, reduces P. aeruginosa biofilms grown on human CF airway epithelial cells. METHODS: P. aeruginosa (PAO1 and six clinical isolates of Pseudomonas) biofilms grown at the apical surface of confluent monolayers of CF airway epithelial cells were treated with ALX-109, either alone or in combination with tobramycin or aztreonam. Bacterial cfu remaining after treatment were determined by plate counting. RESULTS: ALX-109 alone reduced PAO1 biofilm formation, but had no effect on established biofilms. ALX-109 enhanced the ability of tobramycin and aztreonam to inhibit PAO1 biofilm formation and to reduce established PAO1 biofilms. ALX-109 and tobramycin were additive in disrupting established biofilms formed by six clinical isolates of P. aeruginosa obtained from the sputum of CF patients. Mucoid P. aeruginosa isolates were most susceptible to the combination of ALX-109 and tobramycin. In addition, ALX-109 also enhanced the ability of aztreonam to reduce established PAO1 biofilms. CONCLUSIONS: Inhalation therapy combining hypothiocyanite and lactoferrin with TOBI(®) (tobramycin) or Cayston(®) (aztreonam) may be beneficial to CF patients by decreasing the airway bacterial burden of P. aeruginosa.


Asunto(s)
Antibacterianos/metabolismo , Aztreonam/metabolismo , Células Epiteliales/microbiología , Lactoferrina/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Tiocianatos/metabolismo , Tobramicina/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Células Cultivadas , Recuento de Colonia Microbiana , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Viabilidad Microbiana/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
4.
J Antimicrob Chemother ; 67(11): 2673-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843834

RESUMEN

OBJECTIVES: Aztreonam for inhalation solution (AZLI) was recently approved by the FDA for treating cystic fibrosis (CF) patients infected with Pseudomonas aeruginosa. Here we investigated the effect of aztreonam alone or in combination with tobramycin on P. aeruginosa biofilms grown on CF airway epithelial cells. METHODS: P. aeruginosa biofilms, produced by laboratory strains or clinical isolates, were formed on confluent CF airway cells before treatment overnight with aztreonam or tobramycin alone or in combination. Alternatively, antibiotics were added 1 h after bacterial inoculation to assess their ability to impair biofilm formation at 5 h. Bacterial cfu remaining after treatment were then determined by plate counting. RESULTS: In the absence of antibiotics, all strains developed biofilms that disrupted CF airway epithelial monolayers overnight. Tobramycin reduced the cfu of all strains grown as biofilms. Aztreonam reduced the cfu of some strains by ∼1 log unit without preserving the integrity of cystic fibrosis airway cell monolayers, while decreasing the biofilms of other clinical isolates by ∼4 log units and protecting the monolayers from being compromised. The combination of aztreonam and tobramycin reduced the cfu of two strains by an additional 0.5 and 2 log units, respectively. Of all the mechanisms explored, Psl exopolysaccharide production might explain the variations in biofilm tolerance to aztreonam in some of the strains. CONCLUSIONS: Effects of aztreonam on P. aeruginosa biofilms in the in vitro co-culture model are strain-dependent. The simultaneous application of aztreonam and tobramycin may be beneficial for a subset of CF patients by eliminating susceptible P. aeruginosa strains.


Asunto(s)
Antibacterianos/farmacología , Aztreonam/farmacología , Biopelículas/efectos de los fármacos , Células Epiteliales/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Tobramicina/farmacología , Fibrosis Quística/complicaciones , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/fisiología , Factores de Tiempo
5.
J Vis Exp ; (44)2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20972407

RESUMEN

Bacterial biofilms have been associated with a number of different human diseases, but biofilm development has generally been studied on non-living surfaces. In this paper, we describe protocols for forming Pseudomonas aeruginosa biofilms on human airway epithelial cells (CFBE cells) grown in culture. In the first method (termed the Static Co-culture Biofilm Model), P. aeruginosa is incubated with CFBE cells grown as confluent monolayers on standard tissue culture plates. Although the bacterium is quite toxic to epithelial cells, the addition of arginine delays the destruction of the monolayer long enough for biofilms to form on the CFBE cells. The second method (termed the Flow Cell Co-culture Biofilm Model), involves adaptation of a biofilm flow cell apparatus, which is often used in biofilm research, to accommodate a glass coverslip supporting a confluent monolayer of CFBE cells. This monolayer is inoculated with P. aeruginosa and a peristaltic pump then flows fresh medium across the cells. In both systems, bacterial biofilms form within 6-8 hours after inoculation. Visualization of the biofilm is enhanced by the use of P. aeruginosa strains constitutively expressing green fluorescent protein (GFP). The Static and Flow Cell Co-culture Biofilm assays are model systems for early P. aeruginosa infection of the Cystic Fibrosis (CF) lung, and these techniques allow different aspects of P. aeruginosa biofilm formation and virulence to be studied, including biofilm cytotoxicity, measurement of biofilm CFU, and staining and visualizing the biofilm.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Bronquios/citología , Bronquios/microbiología , Técnicas de Cocultivo/métodos , Pseudomonas aeruginosa/fisiología , Células Epiteliales/citología , Células Epiteliales/microbiología , Humanos , Pseudomonas aeruginosa/citología
6.
Am J Respir Cell Mol Biol ; 41(3): 305-13, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19168700

RESUMEN

The ability of Pseudomonas aeruginosa to form antibiotic-resistant biofilms is thought to account for the inability of current therapies to resolve bacterial infections in the lungs of patients with cystic fibrosis (CF). We recently described a system in which highly antibiotic-resistant P. aeruginosa biofilms grow on human CF airway epithelial cells, and using this system we showed that enhanced iron release from CF cells facilitates the development of such highly antibiotic-resistant biofilms. Given the positive role for iron in biofilm development, we investigated whether the FDA-approved iron chelators deferoxamine and deferasirox would enhance the ability of tobramycin, the primary antibiotic used to treat CF lung infections, to eliminate P. aeruginosa biofilms. The combination of tobramycin with deferoxamine or deferasirox reduced established biofilm biomass by approximately 90% and reduced viable bacteria by 7-log units. Neither tobramycin nor deferoxamine nor deferasirox alone had such a marked effect. The combination of tobramycin and FDA-approved iron chelators also prevented the formation of biofilms on CF airway cells. These data suggest that the combined use of tobramycin and FDA-approved iron chelators may be an effective therapy to treat patients with CF and other lung disease characterized by antibiotic-resistant P. aeruginosa biofilms.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Quelantes del Hierro , Infecciones por Pseudomonas/tratamiento farmacológico , Tobramicina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Benzoatos/farmacología , Benzoatos/uso terapéutico , Células Cultivadas , Conalbúmina/farmacología , Conalbúmina/uso terapéutico , Deferasirox , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Células Epiteliales/microbiología , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Tobramicina/farmacología , Tobramicina/uso terapéutico , Triazoles/farmacología , Triazoles/uso terapéutico , Estados Unidos , United States Food and Drug Administration
7.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L25-37, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18359885

RESUMEN

Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing DeltaF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and DeltaF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on DeltaF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing DeltaF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The DeltaF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.


Asunto(s)
Antibacterianos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Fibrosis Quística/microbiología , Farmacorresistencia Microbiana , Células Epiteliales/microbiología , Hierro/metabolismo , Mutación , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/crecimiento & desarrollo , Mucosa Respiratoria/microbiología , Tobramicina/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Células Cultivadas , Técnicas de Cocultivo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Tobramicina/uso terapéutico
8.
Pulm Pharmacol Ther ; 21(4): 595-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18234534

RESUMEN

The cystic fibrosis (CF) lung is chronically inflamed and infected by Pseudomonas aeruginosa, which is a major cause of morbidity and mortality in this genetic disease. Although aerosolization of Tobramycin into the airway of CF patients improves outcomes, the lungs of CF patients, even those receiving antibiotic therapy, are persistently colonized by P. aeruginosa. Recent studies suggest that the antibiotic resistance of P. aeruginosa in the CF lung is due to the formation of drug resistant biofilms, which are defined as communities of microbes associated with surfaces or interfaces, and whose growth is facilitated by thick and dehydrated mucus in the CF lung. In this review, we discuss some of the current models used to study biofilm formation in the context of biotic surfaces, such as airway cells, as well as the contribution of host-derived factors, including DNA, actin and mucus, to the formation of these microbial communities. We suggest that better in vitro models are required, both to understand the interaction of P. aeruginosa with the host airway, and as models to validate new therapeutics, whether targeted at bacteria or host.


Asunto(s)
Biopelículas , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/metabolismo , Actinas/metabolismo , Antibacterianos/farmacología , Fibrosis Quística/tratamiento farmacológico , ADN/metabolismo , Farmacorresistencia Bacteriana , Células Epiteliales/metabolismo , Humanos , Moco/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Esputo/química
9.
Infect Immun ; 76(4): 1423-33, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18212077

RESUMEN

P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Células Epiteliales/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Tobramicina/farmacología , Antiportadores/genética , Proteínas Bacterianas/genética , Línea Celular , Fibrosis Quística/enzimología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Humanos , Oxidorreductasas/genética , Análisis por Matrices de Proteínas , Pseudomonas aeruginosa/genética , Transcripción Genética
10.
J Biol Chem ; 282(32): 23725-36, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17462998

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endosomas/metabolismo , Células Epiteliales/citología , Regulación de la Expresión Génica , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo V/fisiología , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Línea Celular , Endocitosis , Silenciador del Gen , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Cadenas Pesadas de Miosina/química , Miosina Tipo V/química , Interferencia de ARN , Transfección
11.
Am J Physiol Cell Physiol ; 290(3): C862-72, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16236828

RESUMEN

The most common mutation in the CFTR gene in individuals with cystic fibrosis (CF), DeltaF508, leads to the absence of CFTR Cl(-) channels in the apical plasma membrane, which in turn results in impairment of mucociliary clearance, the first line of defense against inhaled bacteria. Pseudomonas aeruginosa is particularly successful at colonizing and chronically infecting the lungs and is responsible for the majority of morbidity and mortality in patients with CF. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the protein is at least partially functional as a Cl(-) channel. Thus current research efforts have focused on identification of drugs that restore the presence of CFTR in the apical membrane to alleviate the symptoms of CF. Because little is known about the effects of P. aeruginosa on CFTR in the apical membrane, whether P. aeruginosa will affect the efficacy of new drugs designed to restore the plasma membrane expression of CFTR is unknown. Accordingly, the objective of the present study was to determine whether P. aeruginosa affects CFTR-mediated Cl(-) secretion in polarized human airway epithelial cells. We report herein that a cell-free filtrate of P. aeruginosa reduced CFTR-mediated transepithelial Cl(-) secretion by inhibiting the endocytic recycling of CFTR and thus the number of WT-CFTR and DeltaF508-CFTR Cl(-) channels in the apical membrane in polarized human airway epithelial cells. These data suggest that chronic infection with P. aeruginosa may interfere with therapeutic strategies aimed at increasing the apical membrane expression of DeltaF508-CFTR.


Asunto(s)
Polaridad Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratoria/citología , Animales , Transporte Biológico , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Perros , Células Epiteliales/citología , Regulación de la Expresión Génica , Humanos , Mutación , Mucosa Respiratoria/microbiología
12.
J Biol Chem ; 280(44): 36762-72, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16131493

RESUMEN

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Semivida , Humanos , Immunoblotting , Inmunoprecipitación , Mutación , Proteínas de Neoplasias/metabolismo , Plásmidos , Transporte de Proteínas , ARN Interferente Pequeño/farmacología , Mucosa Respiratoria/citología , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...