Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1867(1): 130249, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183893

RESUMEN

Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.


Asunto(s)
Hormigas , Quitinasas , Animales , Antifúngicos/química , Hormigas/enzimología , Hormigas/genética , Hormigas/metabolismo , Quitina/química , Quitinasas/química , Quitinasas/genética , Quitinasas/farmacología , Clonación Molecular , Hongos/metabolismo , Insecticidas/farmacología , Larva/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Spodoptera/efectos de los fármacos , Catálisis , Dominio Catalítico
2.
Enzyme Res ; 2019: 6139863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354985

RESUMEN

Acetylcholinesterase (AChE) is responsible for catalyzing the hydrolysis of the neurotransmitter acetylcholine (ACh) leading to acetate and choline (Ch) release. The inhibition of AChE produces a generalized synaptic collapse that can lead to insect death. Herein we report for the first time the isolation of two AChEs from Atta sexdens which were purified by sulphate ammonium precipitation followed by ion exchange chromatography. AsAChE-A and AsAChE-B enzymes have optimum pH of 9.5 and 9.0 and higher activities in 30/50°C and 20°C, respectively, using acetylthiocholine (ATCh) as substrate. Immobilized capillary enzyme reactors (ICERs) were obtained for both enzymes (AsAChE-A-ICER and AsAChE-B-ICER) and their activities were measured by LC-MS/MS through hydrolysis product quantification of the natural substrate ACh. The comparison of activities by LC-MS/MS of both AChEs using ACh as substrate showed that AsAChE-B (free or immobilized) had the highest affinity. The inverse result was observed when the colorimetric assay (Elman method) was used for ATCh as substrate. Moreover, by mass spectrometry and phylogenetic studies, AsAChE-A and AsAChE-B were classified as belonging to AChE-2 and AChE-1 classes, respectively.

3.
Springerplus ; 4: 654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26543788

RESUMEN

In this work we have identified, using mass spectrometry, two laccases produced by Leucoagaricus gongylophorus. One of them, Lac1Lg, was isolated, purified and characterized. Lac1Lg, a monomeric enzyme, was studied using ABTS and syringaldazine substrates. Lac1Lg presented kcat/Km almost threefold higher for syringaldazine than for ABTS, showing a higher catalytic efficiency of Lac1Lg for syringaldazine. The interference of several metal ions and substances in the laccase activity were evaluated. Lac1Lg did not absorb at 600 nm, which is a characteristic of so-called yellow laccases. Lac1Lg also was able to oxidize non-phenolic substrate (anthracene) in the absence of an exogenous mediator, showing that the enzyme has potential to explore in biotechnological processes. Our Lac1Lg three-dimensional molecular model, constructed using homology modeling, showed that the Lac1Lg catalytic site is very closed to blue laccases.

4.
Appl Biochem Biotechnol ; 173(3): 694-704, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24699813

RESUMEN

In this work, the xylanolytic profile of Leucoagaricus gongylophorus was studied, and two extracellular enzymes with xylanolytic activity (XyLg1 and XyLg2) were isolated, purified, and characterized. XyLg1 has a molecular mass of about 38 kDa and pI greater than 4.8. For beechwood xylan substrate, XyLg1 showed an optimum temperature of 40 °C, optimum pH between 8.5 and 10.5, and Km = 14.7 ± 7.6 mg mL(-1). Kinetic studies of the XyLg1 using polygalacturonic acid as substrate were developed, and the enzyme showed optimum pH 5.5, optimum temperature between 50 and 60 °C, and Km = 2.2 ± 0.5 mg mL(-1). XyLg2 has molecular weight of about 24 kDa and pI less than 4.8, and thus is an acid protein. Parameters such as optimum temperature (70 °C) and pH (4.0), as well as the kinetic parameters (Km = 7.4 ± 2.0 mg mL(-1)) using beechwood xylan as substrate, were determined for XyLg2. This enzyme has no activity for polygalacturonic acid as substrate. XyLg1 and XyLg2 are the first native xylanases isolated and characterized from L. gongylophorus fungi and, due to their biochemistry and kinetic features, they have potential to be used in biotechnological processes.


Asunto(s)
Agaricales/enzimología , Endo-1,4-beta Xilanasas/química , Proteínas Fúngicas/química , Pectinas/química , Calor , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA