Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
3.
Sci Rep ; 12(1): 7764, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546177

RESUMEN

Genomic studies may generate massive amounts of data, bringing interpretation challenges. Efforts for the differentiation of benign and pathogenic variants gain importance. In this article, we used segregation analysis and other molecular data to reclassify to benign or likely benign several rare clinically curated variants of autosomal dominant inheritance from a cohort of 500 Brazilian patients with rare diseases. This study included only symptomatic patients who had undergone molecular investigation with exome sequencing for suspected diseases of genetic etiology. Variants clinically suspected as the causative etiology and harbored by genes associated with highly-penetrant conditions of autosomal dominant inheritance underwent Sanger confirmation in the proband and inheritance pattern determination because a "de novo" event was expected. Among all 327 variants studied, 321 variants were inherited from asymptomatic parents. Considering segregation analysis, we have reclassified 51 rare variants as benign and 211 as likely benign. In our study, the inheritance of a highly penetrant variant expected to be de novo for pathogenicity assumption was considered as a non-segregation and, therefore, a key step for benign or likely benign classification. Studies like ours may help to identify rare benign variants and improve the correct interpretation of genetic findings.


Asunto(s)
Padres , Enfermedades Raras , Brasil , Humanos , Mutación , Linaje , Enfermedades Raras/genética , Secuenciación del Exoma
4.
Mol Biol Rep ; 49(5): 3911-3918, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35229241

RESUMEN

BACKGROUND: Several metabolic disorders follow an autosomal recessive inheritance pattern. Epidemiological information on these disorders is usually limited in developing countries. Our objective is to assess carrier frequencies of rare autosomal recessive metabolic diseases in a cohort of Brazilian patients that underwent molecular investigation with exome sequencing and estimate the overall frequency of these diseases using the Hardy-Weinberg equation. METHODS AND RESULTS: We reviewed the molecular findings of 320 symptomatic patients who had carrier status for recessive diseases actively searched. A total of 205 rare variants were reported in 138 different genes associated with metabolic diseases from 156 patients, which represents that almost half (48.8%) of the patients were carriers of at least one heterozygous pathogenic/likely pathogenic (P/LP) variant for rare metabolic disorders. Most of these variants are harbored by genes associated with multisystemic involvement. We estimated the overall frequency for rare recessive metabolic diseases to be 10.96/10,000 people, while the frequency of metabolic diseases potentially identified by newborn screening was estimated to be 2.93/10,000. CONCLUSIONS: This study shows the potential research utility of exome sequencing to determine carrier status for rare metabolic diseases, which may be a possible strategy to evaluate the clinical and social burden of these conditions at the population level and guide the optimization of health policies and newborn screening programs.


Asunto(s)
Enfermedades Metabólicas , Brasil/epidemiología , Estudios de Cohortes , Heterocigoto , Humanos , Recién Nacido , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/genética , Secuenciación del Exoma
5.
Genet Mol Biol ; 44(4): 20210061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34609444

RESUMEN

Next-generation sequencing (NGS) has altered clinical genetic testing by widening the access to molecular diagnosis of genetically determined rare diseases. However, physicians may face difficulties selecting the best diagnostic approach. Our goal is to estimate the rate of possible molecular diagnoses missed by different targeted gene panels using data from a cohort of patients with rare genetic diseases diagnosed with exome sequencing (ES). For this purpose, we simulated a comparison between different targeted gene panels and ES: the list of genes harboring clinically relevant variants from 158 patients was used to estimate the theoretical rate of diagnoses missed by NGS panels from 53 different NGS panels from eight different laboratories. Panels presented a mean rate of missed diagnoses of 64% (range 14%-100%) compared to ES, representing an average predicted sensitivity of 36%. Metabolic abnormalities represented the group with highest mean of missed diagnoses (86%), while seizure represented the group with lowest mean (46%). Focused gene panels are restricted in covering select sets of genes implicated in specific diseases and they may miss molecular diagnoses of rare diseases compared to ES. However, their role in genetic diagnosis remains important especially for well-known genetic diseases with established genetic locus heterogeneity.

6.
Am J Med Genet C Semin Med Genet ; 187(3): 364-372, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34269512

RESUMEN

Several Mendelian disorders follow an autosomal recessive inheritance pattern. Epidemiological information on many inherited disorders may be useful to guide health policies for rare diseases, but it is often inadequate, particularly in developing countries. We aimed to calculate the carrier frequencies of rare autosomal recessive Mendelian diseases in a cohort of Brazilian patients using whole exome sequencing (WES). We reviewed the molecular findings of WES from 320 symptomatic patients who had carrier status for recessive diseases. Using the Hardy-Weinberg equation, we estimated recessive disease frequencies (q2 ) considering the respective carrier frequencies (2pq) observed in our study. We calculated the sensitivity of carrier screening tests based on lists of genes from five different clinical laboratories that offer them in Brazil. A total of 425 occurrences of 351 rare variants were reported in 278 different genes from 230 patients (71.9%). Almost half (48.8%) were carriers of at least one heterozygous pathogenic/likely pathogenic variant for rare metabolic disorders, while 25.9% of epilepsy, 18.1% of intellectual disabilities, 15.6% of skeletal disorders, 10.9% immune disorders, and 9.1% of hearing loss. We estimated that an average of 67% of the variants would not have been detected by carrier screening panels. The combined frequencies of autosomal recessive diseases were estimated to be 26.39/10,000 (or ~0.26%). This study shows the potential research utility of WES to determine carrier status, which may be a possible strategy to evaluate the clinical and social burden of recessive diseases at the population level and guide the optimization of carrier screening panels.


Asunto(s)
Discapacidad Intelectual , Enfermedades Raras , Brasil/epidemiología , Estudios de Cohortes , Humanos , Secuenciación del Exoma
7.
Am J Med Genet C Semin Med Genet ; 184(4): 955-964, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33258288

RESUMEN

Rare diseases comprise a diverse group of conditions, most of which involve genetic causes. We describe the variable spectrum of findings and clinical impacts of exome sequencing (ES) in a cohort of 500 patients with rare diseases. In total, 164 primary findings were reported in 158 patients, representing an overall diagnostic yield of 31.6%. Most of the findings (61.6%) corresponded to autosomal dominant conditions, followed by autosomal recessive (25.6%) and X-linked (12.8%) conditions. These patients harbored 195 variants, among which 43.6% are novel in the literature. The rate of molecular diagnosis was considerably higher for prenatal samples (67%; 4/6), younger children (44%; 24/55), consanguinity (50%; 3/6), gastrointestinal/liver disease (44%; 16/36) and syndromic/malformative conditions (41%; 72/175). For 15.6% of the cohort patients, we observed a direct potential for the redirection of care with targeted therapy, tumor screening, medication adjustment and monitoring for disease-specific complications. Secondary findings were reported in 37 patients (7.4%). Based on cost-effectiveness studies in the literature, we speculate that the reports of secondary findings may influence an increase of 123.2 years in the life expectancy for our cohort, or 0.246 years/cohort patient. ES is a powerful method to identify the molecular bases of monogenic disorders and redirect clinical care.


Asunto(s)
Exoma , Enfermedades Raras , Niño , Estudios de Cohortes , Consanguinidad , Exoma/genética , Femenino , Humanos , Embarazo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación del Exoma
8.
Hum Genomics ; 11(1): 14, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651617

RESUMEN

BACKGROUND: Breast cancer is the most common among women worldwide, and ovarian cancer is the most difficult gynecological tumor to diagnose and with the lowest chance of cure. Mutations in BRCA1 and BRCA2 genes increase the risk of ovarian cancer by 60% and breast cancer by up to 80% in women. Molecular tests allow a better orientation for patients carrying these mutations, affecting prophylaxis, treatment, and genetic counseling. RESULTS: Here, we evaluated the performance of a panel for BRCA1 and BRCA2, using the Ion Torrent PGM (Life Technologies) platform in a customized workflow and multiplex ligation-dependent probe amplification for detection of mutations, insertions, and deletions in these genes. We validated the panel with 26 samples previously analyzed by Myriad Genetics Laboratory, and our workflow showed 95.6% sensitivity and 100% agreement with Myriad reports, with 85% sensitivity on the positive control sample from NIST. We also screened 68 clinical samples and found 22 distinct mutations. CONCLUSIONS: The selection of a robust methodology for sample preparation and sequencing, together with bioinformatics tools optimized for the data analysis, enabled the development of a very sensitive test with high reproducibility. We also highlight the need to explore the limitations of the NGS technique and the strategies to overcome them in a clinically confident manner.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Mutación , Neoplasias Ováricas/genética , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo , Neoplasias de la Mama/patología , Biología Computacional/métodos , Femenino , Humanos , Neoplasias Ováricas/patología , Análisis de Secuencia de ADN/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...